Skip to main content
Log in

Modeling the Break-up of Nano-particle Clusters in Aluminum- and Magnesium-Based Metal Matrix Nano-composites

  • Symposium: Advances in Solidification of Metallic Alloys under External Fields
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Aluminum- and magnesium-based metal matrix nano-composites with ceramic nano-reinforcements promise low weight with high durability and superior strength, desirable properties in aerospace, automobile, and other applications. However, nano-particle agglomerations lead to adverse effects on final properties: large-size clusters no longer act as dislocation anchors, but instead become defects; the resulting particle distribution will be uneven, leading to inconsistent properties. To prevent agglomeration and to break-up clusters, ultrasonic processing is used via an immersed sonotrode, or alternatively via electromagnetic vibration. A study of the interaction forces holding the nano-particles together shows that the choice of adhesion model significantly affects estimates of break-up force and that simple Stokes drag due to stirring is insufficient to break-up the clusters. The complex interaction of flow and co-joint particles under a high frequency external field (ultrasonic, electromagnetic) is addressed in detail using a discrete-element method code to demonstrate the effect of these fields on de-agglomeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Notes

  1. The formulae for the pull off force of adhered particles are often used with the notation Δγ which is the work of adhesion. For spheres of the same material Δγγ/2, therefore P c =2πΔγR.

  2. Parameter μ introduced by Muller[17] is proportional to those suggested by Tabor[16] and Maugis.[18]

References

  1. I.A. Ibrahim, F.A. Mohamed, E.J. Lavernia, J Mater Sci, 26 (1991), 1137-1156

    Article  Google Scholar 

  2. S. Vorozhtsov, D. Eskin, A. Vorozhtsov, and S. Kulkov: in Light Metals 2014, J. Grandfield, ed., TMS, Warrendale, PA, 2014.

  3. J. Tamayo-Ariztondo, S. Madam, E. Djan, D. Eskin, N. Babu, and Z. Fan: in Light Metals 2014, J. Grandfield, ed., TMS, Warrendale, PA, 2014.

  4. Y. Yang, J. Lan and X. Li, “Study on bulk aluminium MMNC fabricated by ultrasonic dispersion of nano-sized SiC particles in molten aluminum alloy” Materials Science and Engineering A, 380(2004), 378–383.

    Article  Google Scholar 

  5. M. Soltani and G. Ahmadi, “On particle adhesion and removal mechanisms in turbulent flow” Journal of Adhesion Science and Technology, 8(7), (1994), 763-785.

    Article  Google Scholar 

  6. R. S. Bradley, “The Cohesive force between Solid Surfaces and the Surface Energy of solids” Phil. Mag. 13(1932), 853–62,

    Article  Google Scholar 

  7. X. Li. Y. Yang, and D. Weiss: in Ultrasonic Cavitation Based Dispersion of Nanoparticles in Aluminum Melts for Solidification Processing of Bulk Aluminum Matrix Nano-composite: Theoretical Study, Fabrication and Characterization, AFS Transactions, American Foundry Society, Schaumburg, IL (2007)

  8. D. Zhang, L. Nastac, J. Mater. Res. Technol., (2015) doi:10.1016/j.jmrt.2014.09.001.

    Google Scholar 

  9. G. Djambazov, V. Bojarevics, B. Lebon, and K. Pericleous: in Light Metals 2014, J. Grandfield, ed., TMS, Warrendale, PA, 2014.

  10. C. Goniva, C. Kloss, A. Hager, G. Wierink, and S. Pirker: 8th International Conference on CFD in Oil & Gas, Metallurgical and Process Industries, SINTEF/NTNU, Trondheim Norway, 21–23 June 2011

  11. A. Hager, C. Kloss, S. Pirker, and C. Goniva: ., “Parallel Resolved Open Source CFD-DEM: Method, Validation and Application” The Journal of Computational Multiphase Flows, 6(1), (2014), 13-27.

    Article  Google Scholar 

  12. Derjaguin, B (1934) Kolloid-Z, 69, 155-164.

    Article  Google Scholar 

  13. Johnson, K. L. “A note on the adhesion of elastic solids”, British Journal of Applied Physics (1958), 9, 199-200.

    Article  Google Scholar 

  14. K.L. Johnson, K. Kendall and A.D. Roberts, “Surface Energy and the Contact of Elastic Solids” Proc. R. Soc. A 324 (1971), 301–13

    Article  Google Scholar 

  15. B.V. Derjaguin, V.M. Muller and Y.P. Toporov, J. Coll. Int. Sci., 53(2) (1975) 314–326

    Article  Google Scholar 

  16. D. Tabor, J. Colloid Interface Sci. 58(1) (1977) 2–13

    Article  Google Scholar 

  17. V.M. Muller, V. S. Yushenko and B.V. Derjaguin, J. Colloid Interface Sci. 77(1) (1980) 91–101

    Article  Google Scholar 

  18. D. Maugis J. Colloid Interface Sci. 150(1) (1992) 243–269

    Article  Google Scholar 

  19. J. A. Greenwood, K. L. Johnson, “An alternative to the Maugis model of adhesion between elastic spheres” J. Phys. D: Appl. Phys., 31(1998), 3279–3290

    Article  Google Scholar 

  20. R. D. Mindlin and H. Deresiewicz, (1953) J. Appl. Mech. Trans. ASME, 20, 327–344.

    Google Scholar 

  21. C. Thornton, K. K. Yin, “Impact of elastic spheres with and without adhesion” Powder Technology, 65(1991),153-166

    Article  Google Scholar 

  22. A.R. Savkoor and G. A. D. Briggs, “The Effect of Tangential Force on the Contact of Elastic Solids in Adhesion” Proc. Roy. Soc. A 356 (1977), 103

    Article  Google Scholar 

  23. R. Di Felice (1994) Int. J. Multiphase Flow 20(I), 153-159

    Article  Google Scholar 

  24. J. N. Israelachvili, Intermolecular and Surface Forces, (Academic Press, New York, 1985), 253.

    Google Scholar 

  25. G.R. Edwards and D.L. Olson: Annual Report, Center for Welding and Joining Research, Colorado School of Mines (1990), pp. 19, 26–27.

  26. S.Y. Oh: Ph.D. Thesis, Department of Material Science and Engineering, MIT, 1987, p. 192.

  27. B.J. Keene “Review of Data for the Surface Tension of Pure Metals”, International Materials Reviews 38-4, (1993), pp 157-192

    Article  Google Scholar 

  28. J. J. Brennan, J. A. Pask, “Effect of Nature of Surfaces on wetting of Sapphire by Liquid Aliminum”, J. of The Americal Ceramic Society 51-10, (1968), pp 569-573

    Article  Google Scholar 

  29. S. Bao, K. Tang, A. Kvithyld, T. Engh, and M. Tangstad: “Wetting of Pure aluminum on Graphite, SiC and Al2O3 in Aluminum Filtration”, Trans. Nonferrous Met. Soc. China 22 (2012), pp 1930-1938

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the ExoMet Project (co-funded by the European Commission (contract FP7-NMP3-LA-2012-280421), by the European Space Agency and by the individual partner organizations).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton Manoylov.

Additional information

Manuscript submitted November 18, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manoylov, A., Bojarevics, V. & Pericleous, K. Modeling the Break-up of Nano-particle Clusters in Aluminum- and Magnesium-Based Metal Matrix Nano-composites. Metall Mater Trans A 46, 2893–2907 (2015). https://doi.org/10.1007/s11661-015-2934-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2934-0

Keywords

Navigation