Skip to main content
Log in

Relationship Between Recrystallization Kinetics and the Inhomogeneity of Stored Energy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A new analytic method based on the microstructural path method with nucleation rate and growth rate as descriptors is proposed, which provides a link between the nonhomogeneous distribution of stored energy in plastically deformed materials and the recrystallization rate. The proposed approach uses easily measured recrystallization rates to provide information about the deformation history and the inhomogeneity of stored energy. The theory was evaluated by comparing direct differential scanning calorimetry measurements of inhomogeneity factor, m, on deformed samples of pure Cu at 498 K (225 °C), to those extracted from hardness measurements. Excellent agreement between the model and the experiment was found. In addition, it is shown how any given probability function describing the initial distribution of stored energy can be used to predict the evolution of the residual stored energy as recrystallization proceeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A.E. Kolmogorov (1937) Akad. Naud SSSR Izv. Ser. Mat., vol. 1, pp. 355–59.

    Google Scholar 

  2. W.A. Johnson and R.F. Mehl: Trans. Am. Inst. Min. Eng., 1939, vol. 135, p. 416-42.

    Google Scholar 

  3. M. Avrami: J. Chem. Phys., 1939, vol. 7, p. 1103-12.

    Article  Google Scholar 

  4. R.A. Vandermeer and D.J. Jensen: Interface Sci, 1998, vol. 6, pp. 95-104.

    Article  Google Scholar 

  5. R. Vandermeer: Metall. Trans. A, 1989, vol. 20, pp. 1933–42.

    Article  Google Scholar 

  6. B. Rath: Metall. Trans. A, 1979, vol. 10A, pp. 1013–19.

    Article  Google Scholar 

  7. J.C. Cahn and W. Hagel: Decomposition of Austenite by Diffusional Processes, Interscience, New York, 1962, p. 131.

  8. R.A. Vandermeer and B.B. Rath: Metall. Trans. A, 1989, vol. 20A, pp. 391-401.

    Article  Google Scholar 

  9. M. Somerday: Mater. Sci. Technol., 2003, vol. 19, pp. 20-9.

    Article  Google Scholar 

  10. K. Marthinsen: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 2705-15.

    Article  Google Scholar 

  11. H. Hesselbarth and I. Gbel: Acta Metall. Mater., 1991, vol. 39, pp. 2135-43.

    Article  Google Scholar 

  12. B. Hutchinson, S. Jonsson, and L. Ryde: Scripta Metall., 1989, vol. 23, pp. 671-76.

    Article  Google Scholar 

  13. A. Rollett, D. Srolovitz, R. Doherty, and M. Anderson: Acta Metall., 1989, vol. 37, pp. 627-39.

    Article  Google Scholar 

  14. D. Mandal and I. Baker: Mater. Sci. Forum, 1996, vol. 207–209, pp. 521–24.

    Article  Google Scholar 

  15. G. Mohamed and B. Bacroix: Acta Mater., 2000, vol. 48, pp. 3295-3302.

    Article  Google Scholar 

  16. S.C. Wang, Z. Zhu, and M.J. Starink: J. Microsc., 2005, vol. 217, pp. 174-78.

    Article  Google Scholar 

  17. A. Godfrey, W.Q. Cao, Q. Liu, and N. Hansen: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2371-78.

    Article  Google Scholar 

  18. J.J. Sodar, R.H. Petrov, and L.A.I. Kestens: Acta Mater., 2011, vol. 59, p. 5735-48.

    Article  Google Scholar 

  19. P. Krger and E. Woldt: Acta Metall. Mater., 1992, vol. 40, pp. 2933-42.

    Article  Google Scholar 

  20. A. Rohatgi and K.S. Vecchio: Mater. Sci. Eng. A, 2002, vol. 328, pp. 256-66.

    Article  Google Scholar 

  21. C. Wrner: Mater. Sci. Forum, 1996, vol. 204–206, pp. 309-12.

    Article  Google Scholar 

  22. J. Szpunar, R. Narayanan, and H. Li: Mater. Manuf. Process., 2007, vol. 22, pp. 928-33.

    Article  Google Scholar 

  23. A. Rollett: Prog. Mater Sci., 1997, vol. 42, no. 14, pp. 79-99.

    Article  Google Scholar 

  24. Y.S. Seo, Y.B. Chun, and S.K. Hwang: Comput. Mater. Sci., 2008, vol. 43, pp. 512-21.

    Article  Google Scholar 

  25. K. Marthinsen, J. Friis, B. Holmedal, I. Skauvik, and T. Furu: Mater. Sci. Forum, 2012, vol. 715, pp. 543-48.

    Article  Google Scholar 

  26. A. Rohatgi, K.S. Vecchio, and G.T. Gray III: Acta Mater., 2001, vol. 49, pp. 427-38.

    Article  Google Scholar 

  27. D. Rittel, A.A. Kidane, M. Alkhader, A. Venkert, P. Landau, and G. Ravichandran: Acta Mater., 2012, vol. 60, pp. 3719-28.

    Article  Google Scholar 

  28. X. Duan and T. Sheppard: Modell. Simul. Mater. Sci. Eng., 2002, vol. 10, p. 363.

    Article  Google Scholar 

  29. C.M. Sellars, A.M. Irisarri, and E.S. Puchi: Symp. Microstruct. Control Dur. Alum. Alloy Process., Metall. Soc. AIME Meet., New York, 1985.

  30. X. Duan and T. Sheppard: Mater. Sci. Eng. A, 2003, vol. 351, pp. 282-92.

    Article  Google Scholar 

  31. J.J. Jonas, X. Quelennec, L. Jiang, and E. Martin: Acta Mater., 2009, vol. 57, pp. 2748-56.

    Article  Google Scholar 

  32. T. Furu, H.R. Shercli, C. Sellars, M. Ashby: Mater. Sci. Forum, 1996, vol. 217–222, pp. 453-58.

    Article  Google Scholar 

  33. T. Furu, K. Marthinsen, and E. Nes: Mater. Sci. Technol., 1990, vol. 6, pp. 1093-102.

    Article  Google Scholar 

  34. A.M. Gokhale and R.T. Dehoff, Metall. Trans. A, 1985, vol. 16A, pp. 559-64.

    Article  Google Scholar 

  35. D. Raabe and R.C. Becker: Modell. Simul. Mater. Sci. Eng., 2000, vol. 8, p. 445.

    Article  Google Scholar 

  36. H.S. Zurob, C.R. Hutchinson, Y. Brechet, and G. Purdy: Acta Mater., 2002, vol. 50, p. 3077-94.

    Article  Google Scholar 

  37. M. Kazeminezhad: Mater. Sci. Eng. A, 2008, vol. 486, pp. 202-7.

    Article  Google Scholar 

  38. M. Kashif Rehman, H. Zurob (2012) Metall. Mater. Trans. A, vol. 44A, pp. 1-10.

    Google Scholar 

  39. R.A. Vandermeer, G.L. Wu, and D. Juul Jensen: Mater. Sci. Technol., 2009, vol. 25, pp. 403–6.

    Article  Google Scholar 

  40. R.T. DeHoff: in Annealing Processes Recovery, Recrystallization and Grain Growth, N. Hansen, D. Juul-Jensen, T. Leffers, and B. Ralph, eds., RISO, Roskilde, Denmark, 1986, pp. 35–52.

  41. G.R. Speich and R.M. Fisher: Recrystallization, Grain-Growth and Textures. American Society for Metals, Metals Park, OH, 1966.

    Google Scholar 

  42. J.W. Cahn: Akad. Naud SSSR Izv. Ser. Mat, 1967, vol. 610, p 610.

    Google Scholar 

  43. B.B. Rath, Solid-Solid Phase Transformations. TMS-AIME, Warrendale, PA, 1982.

    Google Scholar 

  44. R. Vandermeer, R. Masumura, and B. Rath: Acta Metall. Mater., 1991, vol. 39, pp. 383–89.

    Article  Google Scholar 

  45. R. Vandermeer and R. Masumura: Acta Metall. Mater., 1992, vol. 40, pp. 877-86.

    Article  Google Scholar 

  46. B. Rath and C. Pande: Acta Mater., 2011, vol. 59, pp. 7538-45.

    Article  Google Scholar 

  47. P.R. Rios and E. Villa: Scripta Mater., 2011, vol. 65, pp. 938-41.

    Article  Google Scholar 

  48. R.A. Vandermeer and D.J. Jensen: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 2227-35.

    Article  Google Scholar 

  49. R. Vandermeer: Acta Mater., 2005, vol. 53, pp. 1449-57.

    Article  Google Scholar 

  50. M. Avrami: J. Chem. Phys., 1940, vol. 8, p. 212.

    Article  Google Scholar 

  51. M. Avrami: J. Chem. Phys., 1941, vol. 9, p. 177.

    Article  Google Scholar 

  52. M. Oyarzabal, A. Martinez de Guerenu, I. Gutierrez: Mater. Sci. Eng. A, 2008, vol. 485, pp. 200-09.

    Article  Google Scholar 

  53. X. Song, M. Rettenmayr, C. Mller, and H.E. Exner, Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2199-06.

    Article  Google Scholar 

  54. F. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier Ltd., Oxford, 2004.

  55. F. Inoko and G. Mima: Scripta Metall., 1987, vol. 21, pp. 1039-44.

    Article  Google Scholar 

  56. P.A. Beck and P.R. Sperry: J. Appl. Phys., 1950, vol. 21, pp. 150-52.

    Article  Google Scholar 

  57. P. Hurley and F. Humphreys: Acta Mater., 2003, vol. 51, pp. 3779-93.

    Article  Google Scholar 

  58. H.S. Zurob, Y. Brechet, and G. Purdy: Acta Mater., 2001, vol. 49, p. 4183-90.

    Article  Google Scholar 

  59. G. Gottstein, D.A. Molodov, and L.S. Shvindlerman: Interface Sci., 1998, vol. 6, pp. 7-22.

    Article  Google Scholar 

  60. R. Vandermeer, E.M. Lauridsen, and D. Juul Jensen: Mater. Sci. Forum, 2004, vol. 467–470, pp. 197–202.

    Article  Google Scholar 

  61. J.J. Hoyt: Phase Transformation, Mcmaster Innovation Press, Hamilton, ON, vol. 1, 2010.

  62. P. Saidi and A. Karimi Taheri: Master Thesis, Sharif University of Technology, 2005.

  63. R.A. Vandermeer and D. Juul Jensen: Acta Mater., 2003, vol. 51, pp. 3005-18.

    Article  Google Scholar 

  64. F. Zhou, X.Z. Liao, Y.T. Zhu, S. Dallek, and E.J. Lavernia: Acta Mater., 2003, vol. 51, pp. 2777-91.

    Article  Google Scholar 

  65. H.H. Fu, D.J. Benson, and M.A. Meyers: Acta Mater., 2001, vol. 49, pp. 2567-82.

    Article  Google Scholar 

  66. A.T. Jennings, J. Li, and J.R. Greer: Acta Mater., 2011, vol. 59, pp. 5627-37.

    Article  Google Scholar 

  67. J.W. Cahn, Acta Metall., 1956, vol. 4, pp. 449-59.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Ms. Mary Gallerneault for her contribution in the proofreading and editing process of this paper. Enlightening discussions with Dr. Ali Karimi Taheri are also gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peyman Saidi.

Additional information

Manuscript submitted January 8, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saidi, P., Shahandeh, S. & Hoyt, J.J. Relationship Between Recrystallization Kinetics and the Inhomogeneity of Stored Energy. Metall Mater Trans A 46, 2975–2985 (2015). https://doi.org/10.1007/s11661-015-2920-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2920-6

Keywords

Navigation