Skip to main content
Log in

Microstructural and Mechanical Characterization of Ti-12Mo-6Zr Biomaterials Fabricated by Spark Plasma Sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti-12Mo-6Zr/Al2O3 (titanium biomaterial) was prepared by a powder metallurgy route using Spark Plasma Sintering (SPS). Ti, Mo, and Zr powders were mixed by wet milling with different content of alumina nanoparticles (up to 5 wt pct) as an oxide dispersion strengthening phase. Composite powder mixtures were SPSed at 1273 K (1000 °C) followed by heat treatment and quenching. Composite powders, sintered materials, and heat-treated materials were examined using optical and high-resolution electronic microscopy (scanning and transmission) and X-ray diffraction to characterize particle size, surface morphology, and phase identifications for each composition. All sintered materials were evaluated by measuring density, Vickers hardness, and tensile properties. Fully dense sintered materials were produced by SPS and mechanical properties were found to be improved by subsequent heat treatment. The tensile properties as well as the hardness were increased by increasing the content of Al2O3 nanoparticles in the Ti-12Mo-6Zr matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Zhou YL, Niinomi M, Akahori T. Mater. Sci. Eng. A 2004; 384: 92-101.

    Article  Google Scholar 

  2. Williams DF. Biomaterials 2008; 29:2941–53.

    Article  Google Scholar 

  3. Zhou YL, Niinomi M, Akahori T. Mater. Sci. Eng. A 2004; 371: 283-90.

    Article  Google Scholar 

  4. J.A. Davidson and F.S. Georgette: Proceedings of the Implant Manufacturing and Material Technology, Society of Manufacturing Engineers, Dearborn, 1987, pp. 122–26.

  5. Niinomi M. Mater. Sci. Eng. A 1998; 243: 231-36.

    Article  Google Scholar 

  6. Lawrence K. Nature, 1980, 283, 106-07.

    Article  Google Scholar 

  7. J. Black and G.W. Hastings: in Handbook of Biomaterial Properties, J. Black and G.W. Hastings, eds., Chapman & Hall, London, 1998.

  8. Yoshimitsu O, Emiko G, Takeshi M. Biomaterials 2004; 25: 5913-20.

    Article  Google Scholar 

  9. Wapner KL. Clin. Orthop. Relat. Res. 1991; 271: 12–20.

    Google Scholar 

  10. McGregor DB, Baan RA, Partensky C, Rice JM, Wilbourn JD. Eur. J. Cancer 2000;36(3):307–13.

    Article  Google Scholar 

  11. Teoh SH, Int. J. Fatigue 2000; 22(10):825–37.

    Article  Google Scholar 

  12. Niinomi M, Metall. Mater. Trans. A 2001; 33A: 477–86.

    Google Scholar 

  13. Niinomi M, Sci. Technol. Adv. Mater 2003; 4: 445–54.

    Article  Google Scholar 

  14. Kuroda D, Niinomi M, Morinaga M, Kato Y, Yashiro T, Mater. Sci. Eng. A 1998; 243 (1–2): 244–49.

    Article  Google Scholar 

  15. Niinomi M, Kuroda D, Fukunaga KI, Morinaga M, Kato Y, Yashiro T, Suzuki A (1999) Mater. Sci. Eng. A 263:193-99.

    Article  Google Scholar 

  16. Kuroda D, Niinomi M, Fukui H, Suzuki A, Hasegawa S (2001) In: Niinomi M, Okabe T, Taleff EM, Lesure DR, Lippard HE (eds). Structural Biomaterials for the 21st Century. Warrendale: TMS, pp. 99-106.

    Google Scholar 

  17. T. Akahori, M. Niinomi, T. Yabunaka, D. Kuroda, H. Fukui, A. Suzuki, and J. Hasegawa: in Proceedings of the PRICM 4, S. Hanada, Z. Zhong, S.W. Nam, and R.N. Wright, eds., The Japan Institute of Metals, Sendai, 2001, pp. 209–12.

  18. S.G. Steinemann: in Evaluation of Biomaterials, G.D. Winter, J.L. Leray, and K. Grootde, eds., Wiley, New York, 1980, pp. 1–34.

  19. Kawahara H, Ochi S, Tanetani K, Kato K, Isogai M, Mizuno Y,Yamamoto H, Yamaguchi A, J. Jpn. Soc. Dent. Apparat. Mater. 1963; 4(65): 65-75.

    Google Scholar 

  20. Gibbesch B, Elssner G, Petzow G, Int J Oral Maxillofac Implants 1989; 4(2):131-7.

    Google Scholar 

  21. Bal BS, Garino J, Ries M, Rahaman MN (2006) Semin Arthroplasty 17:94–101.

    Article  Google Scholar 

  22. Bierbaum BE, Nairus J, Kuesis D, Morrison JC, Ward D, Clin. Orthop. Relat Res 2002; 405:158–63.

    Article  Google Scholar 

  23. J.D. Chang, K. Billau, M.C. Lee, and J.W. Ahn: Steinkopff, 2007, pp. 123–32.

  24. Laskin RS, Tech. Knee Surg. 2004; 3:187–92.

    Article  Google Scholar 

  25. T. Pandorf and M. Kuntz: Bioceram. Altern. Bear. Jt. Arthroplast., 2007, pp. 137–43.

  26. H.B. Skinner: Clin. Orthop. Relat. Res., 1999, pp. 83–91.

  27. Hannouche D, Hamadouche M, Nizard R, Bizot P, Meunier A, Sedel L, Clin. Orthop. Relat Res. 2005; 430:62–71.

    Article  Google Scholar 

  28. Harms J, Mausle E, J. Biomed. Mater. Res. 1979; 13:67–87.

    Article  Google Scholar 

  29. Boutin P, La Presse Méd. 1971; 79:639–40.

    Google Scholar 

  30. H. Oonishi, S. Kim, M. Kyomoto, M. Iwamoto, and M. Ueno: Bioceram Altern Bear. Jt. Arthroplast., 2006, pp. 101–10.

  31. Semlitsch M, Lehmann M, Weber H, J. Biomed. Mater. Res. 1977; 11:537–52.

    Article  Google Scholar 

  32. H. Oonishi, H. Fujita, S. Itoh, S. Kin, H. Amino, and E. Tsuji: in Key Engineering Materials, S. Brown, I. Clarke, and P. Williams, eds., Palm Springs, CA, 2002, pp. 499–502.

  33. H. Oonishi, H. Fujita, S. Itoh, S. Kin, and H. Amino: in Key Engineering Materials, S. Brown, I. Clarke, and P. Williams, eds., Palm Springs, CA, 2002, pp. 479–82.

  34. H. Oonishi, L. Hench, J. Wilson, F. Sugihara, E. Tsuji, M. Matsuura, S. Kin, T. Yamamot, and S. Mizokawa: J. Biomed. Mater. Res., 2000, vol. 51 (1), pp. 37–46.

  35. P. Boutin, P. Christel, J.M. Dorlot, A. Meunier, A. De Roquancourt, D. Blanquaert, S. Herman, L. Sedel, and J. Witvoet: J. Biomed. Mater. Res., 1988, vol. 22, pp. 1203–32.

  36. Majima T, Yasuda K, Tago H, Aoki Y, Minami A, Knee Surg. Sports Traumatol. Arthrosc. 2008;16:152–56.

    Article  Google Scholar 

  37. Carbajal G, Martinez-Villafane A, Gonzalez-Rodriguez JG, Castano VM, Anti-Corros. Methods Mater. 2001; 48:241–45.

    Article  Google Scholar 

  38. Shen GX, Chen YC, Lin CJ, Thin Solid Films 2005; 489:130–36.

    Article  Google Scholar 

  39. Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R, Biomaterials 2000; 21:1803–10.

    Article  Google Scholar 

  40. Webster TJ, Siegel RW, Bizios R, 1999. Biomaterials 20:1222–27.

    Article  Google Scholar 

  41. Bigi A, Nicoli-Aldini N, Bracci B, J. Biomed. Mater. Res. A 2007; 82:213–21.

    Article  Google Scholar 

  42. Sato M, Aslani A, Sambito MA, Kalkhoran NM, Slamovich EB, Webster TJ, J. Biomed. Mater. Res. A 2008; 84:265-72.

    Article  Google Scholar 

  43. Wang Y, Lim S, Luo JL, Xu ZH, Wear 2006; 260:976–83.

    Article  Google Scholar 

  44. Wang YM, Guo LX, Ouyang JH, Zhou Y, Jia DC. Appl. Surf. Sci. 2009; 255:6875-80.

    Article  Google Scholar 

  45. Jackson HF, Jayaseelan DD, Reece MJ, Inam F, Manara D, Casoni CP, De Bruycker F, Boboridis K, Lee WE. Int. J. Appl. Ceram. Technol. 2010; 7: 316-26.

    Article  Google Scholar 

  46. Xu J, Zeng W, Jia Z, Sun X, Zhou J. J. Alloy. Compd. 2015; 618:343-48.

    Article  Google Scholar 

  47. Lee HN, Johnson DR, Inui H, Oh MH, Wee DM, Yamaguchi M. Acta Mater. 2000; 48(12): 3221-33.

    Article  Google Scholar 

  48. Hao YL, Niinomi M, Kuroda D, Fukunaga K, Zhou YL, Yang R, Suzuki A (2002) Metall. Mater. Trans. A 33A: 3137–44.

    Article  Google Scholar 

  49. Lee YT, Peters M, Welsch G. Metall. Trans. A 1991; 22A: 709-14.

    Article  Google Scholar 

  50. Cui ZX (2000) Metallography and Heat Treatments, Mechanical Industry Press of China, Beijing.

    Google Scholar 

  51. Dieter DE. Mechanical Metallurgy, 2nd ed., McGraw-Hill Ltd., Tokyo, 1976.

    Google Scholar 

  52. Mack DJ. Trans. AIME 1946; 166. p. 68–85.

    Google Scholar 

  53. Li S, Hao Y, Yang R, Cui Y, Niinomi M. Mater. Trans. 2002; 43 (12) : 2964-69.

    Article  Google Scholar 

  54. Y. Song, R. Yang, Z.X. Guo, and D. Li: in Structural Biomaterials for 21st Century, M. Niinomi and H. Rack, eds., TMS, Warrendale, PA, 2001, pp. 273–80.

Download references

Acknowledgment

The authors would like to acknowledge Prof. Randall M. German, professor of powder metallurgy at San Diego State University, for his guidance during the microstructural investigations and mechanical characterizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Walid Mohamed Rashad Mohamed Daoush.

Additional information

Manuscript submitted April 21, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daoush, W.M.R.M., Park, H.S., Inam, F. et al. Microstructural and Mechanical Characterization of Ti-12Mo-6Zr Biomaterials Fabricated by Spark Plasma Sintering. Metall Mater Trans A 46, 1385–1393 (2015). https://doi.org/10.1007/s11661-014-2693-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2693-3

Keywords

Navigation