Skip to main content
Log in

On the Ultimate Strength of Condensed Matter

  • Symposium: Dynamic Behavior of Materials VI
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This and an accompanying paper track a range of thresholds for the response of condensed matter under loading in compression, from the ambient state to the point at which the material bond strength is overcome and it becomes warm dense matter. The threshold considered here is the weak shock limit that differentiates weak- from strong shock dynamic loading. This work examines this threshold and shows a correlation with the theoretical strength of the material. The structure of the shock that evolves has steady and unsteady phases that sweep different regions in a target in differing manners. This is put in context with scale to show it as a transit to a hydrodynamic regime. Limits on the applicability of solid mechanics are discussed in relation to the mechanisms observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bourne, N.K., On Designing Structures for Extreme Environments. Int. J. Imp. Engng., 2012. 48: p. 107-115.

    Article  Google Scholar 

  2. Bourne, N.K., Materials in Mechanical Extremes: Fundamentals and Applications. 2013, Cambridge: Cambridge University Press.

    Book  Google Scholar 

  3. Liou, J.-C., A statistical analysis of the future debris environment. Acta Astronautica, 2008. 62: p. 264-271.

    Article  Google Scholar 

  4. Liou, J.-C. and N.L. Johnson, Risks in space from orbiting debris. Science, 2006. 311: p. 340-341.

    Article  Google Scholar 

  5. G. Wadsworth: Basic Research Needs for Materials under Extreme Environments, 2007, BES, DoE, US, http://science.energy.gov/~/media/bes/pdf/reports/files/muee_rpt.pdf, Accessed July 2014.

  6. Pokluda, J., M. Cerny, P. Sandera, and M. Sob, Calculations of theoretical strength: State of the art and history. Journal of Computer-Aided Materials Design, 2004. 11: p. 1-28.

    Article  Google Scholar 

  7. Paxton, A.T., P. Gumbsch, and M. Methfessel, A quantum mechanical calculation of the theoretical strength of metals. Phil. Mag. Letters, 1991. 63: p. 267-274.

    Article  Google Scholar 

  8. Ashcroft, N.W., Nature, 2009. 458: p. 158-159.

    Article  Google Scholar 

  9. Rousseau, B. and N.W. Ashcroft, Interstitial Electronic Localization. Phys. Rev. Lett., 2008. 101: 046407.

    Article  Google Scholar 

  10. N.K. Bourne: Proc. R. Soc. A, 2006, vol. 462, pp. 3061–80

    Article  Google Scholar 

  11. N.K. Bourne: Proc. R. Soc. A, 2006, vol. 462, pp. 3213–31.

    Article  Google Scholar 

  12. Fortov, V.E., Extreme States of Matter: On Earth and in the Cosmos. Elsevier, Amsterdam, 2011.

    Book  Google Scholar 

  13. Davison, L. and R.A. Graham, Shock compression of solids. Phys. Rep., 1979. 55: p. 255-379.

    Article  Google Scholar 

  14. Koenig, M., A. Benuzzi-Mounaix, A. Ravasio, T. Vinci, N. Ozaki, S. Lepape, D. Batani, G. Huser, T. Hall, D. Hicks, A. MacKinnon, P. Patel, H.S. Park, T. Boehly, M. Borghesi, S. Kar, and L. Romagnani, Progress in the study of warm dense matter. Plasma Phys. Control. Fusion 2005. 47: B441.

    Article  Google Scholar 

  15. Moriarty, J.A., L.X. Benedict, J.N. Glosli, R.Q. Hood, D.A. Orlikowski, M.V. Patel, P. Söderlind, F.H. Streitz, M. Tang, and L.H. Yang, Robust Quantum-Based Interatomic Potentials for Multiscale Modeling in Transition Metals. J. Mater. Res., 2006. 21: p. 563.

    Article  Google Scholar 

  16. Soderlind, P. and J.A. Moriarty, Phys. Rev. B 1998. 57: p. 10340-10350.

    Article  Google Scholar 

  17. Bourne, N.K., Materials’ Physics in Extremes: Akrology. Metall. Mater. Trans. A., 2011. 42: p. 2975-2984.

    Article  Google Scholar 

  18. Frenkel, J., Z. Phys., 1926. 37: p. 572.

    Article  Google Scholar 

  19. S.P. Marsh: in LASL Shock Hugoniot Data, University of California Press, Berkeley, CA, 1980.

  20. M. van Thiel: Compendium of Shock Wave Data, Lawrence Radiation Laboratory, Livermore, CA, 1966.

    Google Scholar 

  21. Bourne, N.K., The Limits of Strength in Materials in the Condensed Phase. J. Phys.: Conf. Series, 2014. 500: 112010.

    Article  Google Scholar 

  22. Richter, G., K. Hillerich, D.S. Gianola, R. Monig, O. Kraft, and C.A. Volkert, Ultrahigh Strength Single Crystalline Nanowhiskers Grown by Physical Vapor Deposition. Nano Lett., 2009. 9(8): p. 3048-3052.

    Article  Google Scholar 

  23. N.K. Bourne: Metall. Mater. Trans. A, 2014, this volume.

  24. G.T. Gray, III: in ASM Handbook. Mechanical Testing and Evaluation, vol. 8, H. Kuhn and D. Medlin, eds., ASM International, Materials Park, OH, 2000, pp. 530–38.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil K. Bourne.

Additional information

Manuscript submitted May 5, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourne, N.K. On the Ultimate Strength of Condensed Matter. Metall Mater Trans A 46, 4498–4505 (2015). https://doi.org/10.1007/s11661-014-2419-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2419-6

Keywords

Navigation