Skip to main content

Advertisement

Log in

Effects of exercise on bone mineral density in middle-aged and older men: A comprehensive meta-analysis

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

This meta-analysis including 10 randomised controlled trials suggests that exercise is associated with a statistically significant, but relatively mild, improvement effect on bone mineral density in middle-aged and older men, indicating that exercise has the potential to be a safe and effective way toavert bone loss in men.

Purpose

To determine the effect of exercise on bone mineral density (BMD) in middle-aged and older men.

Methods

We searched three electronic databases up to March 21, 2022. A systematic review of the literature according to the PRISMA statement included (1) randomised controlled trials (RCTs), with (2) at least one exercise group as an intervention versus a control group, (3) men aged ≥ 45 years old, and (4) areal BMD of the lumbar spine (LS) and/or femoral neck (FN) and/or total hip (TH) and/or trochanter region. Mean differences (MD) for BMD changes at the LS, FN, TH, and trochanter were defined as outcome measures.

Results

A total of 10 eligible RCTs were included (N = 555 participants). Exercise significantly improved BMD, and the summarised MD was 0.02 (95% CI: 0.00 to 0.05) for LS BMD, 0.01 (95% CI: 0.00 to 0.02) for FN BMD, 0.01 (95% CI: 0.00 to 0.01) for TH BMD, and 0.03 (95% CI: 0.00 to 0.05) for trochanter BMD. Subgoup analyses showed the improvement effect was statistically significant in trials with longer duration and higher intensity in LS (≥ 12 months: MD, 0.01, 95% CI:0.00 to 0.03; higher intensity: MD, 0.01, 95% CI:0.00 to 0.03) and FN (≥ 12 months: MD, 0.02, 95% CI:0.01 to 0.02; higher intensity: MD, 0.01, 95% CI:0.01 to 0.02).

Conclusion

Our results suggested a relatively mild, improvement effect of exercise on LS and proximal femur BMD. Exercise has the potential to be an effective way to avert bone loss in middle-aged and older men.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The raw datasets generated and/or analyzed during this study are not publicly available but are available from the corresponding author on reasonable request.

References

  1. Kanis JA, Cooper C, Rizzoli R, Reginster JY (2019) European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int 30(1):3–44. https://doi.org/10.1007/s00198-018-4704-5

    Article  CAS  PubMed  Google Scholar 

  2. Lötters FJ, van den Bergh JP, de Vries F, Rutten-van Mölken MP (2016) Current and Future Incidence and Costs of Osteoporosis-Related Fractures in The Netherlands: Combining Claims Data with BMD Measurements. Calcif Tissue Int 98(3):235–243. https://doi.org/10.1007/s00223-015-0089-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Noel SE, Santos MP, Wright NC (2021) Racial and Ethnic Disparities in Bone Health and Outcomes in the United States. J Bone Miner Res 36(10):1881–1905. https://doi.org/10.1002/jbmr.4417

    Article  PubMed  Google Scholar 

  4. Wright NC, Looker AC, Saag KG, Curtis JR, Delzell ES, Randall S, Dawson-Hughes B (2014) The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. J Bone Miner Res 29(11):2520–2526. https://doi.org/10.1002/jbmr.2269

    Article  PubMed  Google Scholar 

  5. Singer A, Exuzides A, Spangler L, O’Malley C, Colby C, Johnston K, Agodoa I, Baker J, Kagan R (2015) Burden of illness for osteoporotic fractures compared with other serious diseases among postmenopausal women in the United States. Mayo Clin Proc 90(1):53–62. https://doi.org/10.1016/j.mayocp.2014.09.011

    Article  PubMed  Google Scholar 

  6. Rossini M, Adami S, Bertoldo F, Diacinti D, Gatti D, Giannini S, Giusti A, Malavolta N, Minisola S, Osella G, Pedrazzoni M, Sinigaglia L, Viapiana O, Isaia GC (2016) Guidelines for the diagnosis, prevention and management of osteoporosis. Reumatismo 68(1):1–39. https://doi.org/10.4081/reumatismo.2016.870

    Article  CAS  PubMed  Google Scholar 

  7. Qaseem A, Forciea MA, McLean RM, Denberg TD, Barry MJ, Cooke M, Fitterman N, Harris RP, Humphrey LL, Kansagara D, McLean RM, Mir TP, Schünemann HJ (2017) Treatment of Low Bone Density or Osteoporosis to Prevent Fractures in Men and Women: A Clinical Practice Guideline Update From the American College of Physicians. Ann Intern Med 166(11):818–839. https://doi.org/10.7326/m15-1361

    Article  PubMed  Google Scholar 

  8. Nuti R, Brandi ML, Checchia G, Di Munno O, Dominguez L, Falaschi P, Fiore CE, Iolascon G, Maggi S, Michieli R, Migliaccio S, Minisola S, Rossini M, Sessa G, Tarantino U, Toselli A, Isaia GC (2019) Guidelines for the management of osteoporosis and fragility fractures. Intern Emerg Med 14(1):85–102. https://doi.org/10.1007/s11739-018-1874-2

    Article  PubMed  Google Scholar 

  9. Kannegaard PN, van der Mark S, Eiken P, Abrahamsen B (2010) Excess mortality in men compared with women following a hip fracture. National analysis of comedications, comorbidity and survival. Age Ageing 39(2):203–9. https://doi.org/10.1093/ageing/afp221

    Article  PubMed  Google Scholar 

  10. Dallas SL, Prideaux M, Bonewald LF (2013) The osteocyte: an endocrine cell and more. Endocr Rev 34(5):658–690. https://doi.org/10.1210/er.2012-1026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bull FC, Al-Ansari SS, Biddle S, Borodulin K, Buman MP, Cardon G, Carty C, Chaput JP, Chastin S, Chou R, Dempsey PC, DiPietro L, Ekelund U, Firth J, Friedenreich CM, Garcia L, Gichu M, Jago R, Katzmarzyk PT, Lambert E, Leitzmann M, Milton K, Ortega FB, Ranasinghe C, Stamatakis E, Tiedemann A, Troiano RP, van der Ploeg HP, Wari V, Willumsen JF (2020) World Health Organization 2020 guidelines on physical activity and sedentary behaviour. Br J Sports Med 54(24):1451–1462. https://doi.org/10.1136/bjsports-2020-102955

    Article  PubMed  Google Scholar 

  12. Iolascon G, de Sire A, Curci C, Paoletta M, Liguori S, Calafiore D, Gimigliano F, Moretti A (2021) Osteoporosis guidelines from a rehabilitation perspective: systematic analysis and quality appraisal using AGREE II. Eur J Phys Rehabil Med 57(2):273–279. https://doi.org/10.23736/s1973-9087.21.06581-3

    Article  PubMed  Google Scholar 

  13. Trimpou P, Landin-Wilhelmsen K, Odén A, Rosengren A, Wilhelmsen L (2010) Male risk factors for hip fracture-a 30-year follow-up study in 7,495 men. Osteoporos Int 21(3):409–416. https://doi.org/10.1007/s00198-009-0961-7

    Article  CAS  PubMed  Google Scholar 

  14. Lai JK, Lucas RM, Armstrong M, Banks E (2013) Prospective observational study of physical functioning, physical activity, and time outdoors and the risk of hip fracture: a population-based cohort study of 158,057 older adults in the 45 and up study. J Bone Miner Res 28(10):2222–2231. https://doi.org/10.1002/jbmr.1963

    Article  PubMed  Google Scholar 

  15. Sherrington C, Fairhall NJ, Wallbank GK, Tiedemann A, Michaleff ZA, Howard K, Clemson L, Hopewell S, Lamb SE (2019) Exercise for preventing falls in older people living in the community. Cochrane Database Syst Rev 1(1):12424. https://doi.org/10.1002/14651858.CD012424.pub2

    Article  Google Scholar 

  16. Tricco AC, Thomas SM, Veroniki AA, Hamid JS, Cogo E, Strifler L, Khan PA, Robson R, Sibley KM, MacDonald H, Riva JJ, Thavorn K, Wilson C, Holroyd-Leduc J, Kerr GD, Feldman F, Majumdar SR, Jaglal SB, Hui W, Straus SE (2017) Comparisons of Interventions for Preventing Falls in Older Adults: A Systematic Review and Meta-analysis. JAMA 318(17):1687–1699. https://doi.org/10.1001/jama.2017.15006

    Article  PubMed  PubMed Central  Google Scholar 

  17. Feskanich D, Willett W, Colditz G (2002) Walking and leisure-time activity and risk of hip fracture in postmenopausal women. JAMA 288(18):2300–2306. https://doi.org/10.1001/jama.288.18.2300

    Article  PubMed  Google Scholar 

  18. Gregg EW, Cauley JA, Seeley DG, Ensrud KE, Bauer DC (1998) Physical activity and osteoporotic fracture risk in older women. Study of Osteoporotic Fractures Research Group. Ann Intern Med 129(2):81–8. https://doi.org/10.7326/0003-4819-129-2-199807150-00002

    Article  CAS  PubMed  Google Scholar 

  19. Zhao R, Zhao M, Xu Z (2015) The effects of differing resistance training modes on the preservation of bone mineral density in postmenopausal women: a meta-analysis. Osteoporos Int 26(5):1605–1618. https://doi.org/10.1007/s00198-015-3034-0

    Article  CAS  PubMed  Google Scholar 

  20. Kelley GA, Kelley KS, Kohrt WM (2012) Effects of ground and joint reaction force exercise on lumbar spine and femoral neck bone mineral density in postmenopausal women: a meta-analysis of randomized controlled trials. BMC Musculoskelet Disord 13:177. https://doi.org/10.1186/1471-2474-13-177

    Article  PubMed  PubMed Central  Google Scholar 

  21. Xiaoqin Lu JW. Effects of Exercise on Bone Mineral Density in Middle-aged and older men:a comprehensive meta-analysis. 2022; Available from: https://www.crd.york.ac.uk/prospero/#myprospero.

  22. Kukuljan S, Nowson CA, Sanders KM, Nicholson GC, Seibel MJ, Salmon J, Daly RM (2011) Independent and combined effects of calcium-vitamin D3 and exercise on bone structure and strength in older men: an 18-month factorial design randomized controlled trial. J Clin Endocrinol Metab 96(4):955–963. https://doi.org/10.1210/jc.2010-2284

    Article  CAS  PubMed  Google Scholar 

  23. Williams MA, Haskell WL, Ades PA, Amsterdam EA, Bittner V, Franklin BA, Gulanick M, Laing ST, Stewart KJ (2007) Resistance exercise in individuals with and without cardiovascular disease: 2007 update: a scientific statement from the American Heart Association Council on Clinical Cardiology and Council on Nutrition, Physical Activity, and Metabolism. Circulation 116(5):572–584. https://doi.org/10.1161/circulationaha.107.185214

    Article  PubMed  Google Scholar 

  24. Weeks BK, Beck BR (2008) The BPAQ: a bone-specific physical activity assessment instrument. Osteoporos Int 19(11):1567–1577. https://doi.org/10.1007/s00198-008-0606-2

    Article  CAS  PubMed  Google Scholar 

  25. Prawiradilaga RS, Madsen AO, Jørgensen NR, Helge EW (2020) Acute response of biochemical bone turnover markers and the associated ground reaction forces to high-impact exercise in postmenopausal women. Biol Sport 37(1):41–48. https://doi.org/10.5114/biolsport.2020.91497

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kukuljan S, Nowson CA, Bass SL, Sanders K, Nicholson GC, Seibel MJ, Salmon J, Daly RM (2009) Effects of a multi-component exercise program and calcium-vitamin-D3-fortified milk on bone mineral density in older men: a randomised controlled trial. Osteoporos Int 20(7):1241–1251. https://doi.org/10.1007/s00198-008-0776-y

    Article  CAS  PubMed  Google Scholar 

  27. Whiteford J, Ackland TR, Dhaliwal SS, James AP, Woodhouse JJ, Price R, Prince RL, Kerr DA (2010) Effects of a 1-year randomized controlled trial of resistance training on lower limb bone and muscle structure and function in older men. Osteoporos Int 21(9):1529–1536. https://doi.org/10.1007/s00198-009-1132-6

    Article  CAS  PubMed  Google Scholar 

  28. Bolam KA, Skinner TL, Jenkins DG, Galvão DA, Taaffe DR (2015) The Osteogenic Effect of Impact-Loading and Resistance Exercise on Bone Mineral Density in Middle-Aged and Older Men: A Pilot Study. Gerontology 62(1):22–32. https://doi.org/10.1159/000435837

    Article  PubMed  Google Scholar 

  29. Harding AT, Weeks BK, Lambert C, Watson SL, Weis LJ, Beck BR (2020) A Comparison of Bone-Targeted Exercise Strategies to Reduce Fracture Risk in Middle-Aged and Older Men with Osteopenia and Osteoporosis: LIFTMOR-M Semi-Randomized Controlled Trial. J Bone Miner Res 35(8):1404–1414. https://doi.org/10.1002/jbmr.4008

    Article  PubMed  Google Scholar 

  30. Naderi A, Goli S, Shephard R, Degens H (2021) Six-month table tennis training improves body composition, bone health and physical performance in untrained older men; a randomized controlled trial. Science & sports, https://doi.org/10.1016/j.scispo.2020.02.008

  31. Kemmler W, Kohl M, Frohlich M, Jakob F, Engelke K, von SS, Schoene D (2020) Effects of High-Intensity Resistance Training on Osteopenia and Sarcopenia Parameters in Older Men with Osteosarcopenia—One-Year Results of the Randomized Controlled Franconian Osteopenia and Sarcopenia Trial (FrOST). Journal of bone and mineral research, https://doi.org/10.1002/jbmr.4027

  32. Alayat MSM, Abdel-Kafy EM, Thabet AAM, Abdel-Malek AS, Ali TH, Header EA (2018) Long-Term Effect of Pulsed Nd-YAG Laser Combined with Exercise on Bone Mineral Density in Men with Osteopenia or Osteoporosis: 1 Year of Follow-Up. Photomed Laser Surg 36(2):105–111. https://doi.org/10.1089/pho.2017.4328

    Article  PubMed  Google Scholar 

  33. Helge EW, Andersen TR, Schmidt JF, Jørgensen NR, Hornstrup T, Krustrup P, Bangsbo J (2014) Recreational football improves bone mineral density and bone turnover marker profile in elderly men. Scand J Med Sci Sports 24(1):98–104. https://doi.org/10.1111/sms.12239

    Article  PubMed  Google Scholar 

  34. Stewart KJ, Bacher AC, Hees PS, Tayback M, Ouyang P, Jan de Beur S (2005) Exercise effects on bone mineral density relationships to changes in fitness and fatness. Am J Prev Med 28(5):453–460. https://doi.org/10.1016/j.amepre.2005.02.003

    Article  PubMed  Google Scholar 

  35. Liu L, Shi Q, Chen Q, Li Z (2019) Mathematical modeling of bone in-growth into undegradable porous periodic scaffolds under mechanical stimulus. J Tissue Eng 10:2041731419827167. https://doi.org/10.1177/2041731419827167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. (2019) 2018 ESC/EACTS Guidelines on myocardial revascularization. Revista española de cardiología. 72(1):73. https://doi.org/10.1016/j.rec.2018.11.012

  37. West DW, Lee-Barthel A, McIntyre T, Shamim B, Lee CA, Baar K (2015) The exercise-induced biochemical milieu enhances collagen content and tensile strength of engineered ligaments. J Physiol 593(20):4665–4675. https://doi.org/10.1113/jp270737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mages M, Shojaa M, Kohl M, von Stengel S, Becker C, Gosch M, Jakob F, Kerschan-Schindl K, Kladny B, Klöckner N, Lange U, Middeldorf S, Peters S, Schoene D, Sieber CC, Tholen R, Thomasius FE, Uder M, Kemmler W (2021) Exercise Effects on Bone Mineral Density in Men. Nutrients 13(12):4244. https://doi.org/10.3390/nu13124244

    Article  PubMed  PubMed Central  Google Scholar 

  39. Ghayomzadeh M, Earnest CP, Hackett D, SeyedAlinaghi S, Navalta JW, Gholami M, Hosseini Rouzbahani N, Mohraz M, Voltarelli FA (2021) Combination of resistance and aerobic exercise for six months improves bone mass and physical function in HIV infected individuals: A randomized controlled trial. Scand J Med Sci Sports 31(3):720–732. https://doi.org/10.1111/sms.13871

    Article  PubMed  Google Scholar 

  40. Jones K, Baker K, Speight RA, Thompson NP, Tew GA (2020) Randomised clinical trial: combined impact and resistance training in adults with stable Crohn’s disease. Aliment Pharmacol Ther 52(6):964–975. https://doi.org/10.1111/apt.16002

    Article  PubMed  Google Scholar 

  41. Hamilton BR, Staines KA, Kelley GA, Kelley KS, Kohrt WM, Pitsiladis Y, Guppy FM (2022) The Effects of Exercise on Bone Mineral Density in Men: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Calcif Tissue Int 110(1):41–56. https://doi.org/10.1007/s00223-021-00893-6

    Article  CAS  PubMed  Google Scholar 

  42. Kelley GA, Kelley KS, Kohrt WM (2013) Exercise and bone mineral density in men: a meta-analysis of randomized controlled trials. Bone 53(1):103–111. https://doi.org/10.1016/j.bone.2012.11.031

    Article  CAS  PubMed  Google Scholar 

  43. Ashe MC, Santos IKD, Edward NY, Burnett LA, Barnes R, Fleig L, Puyat JH, Sale JEM, McKay HA, Giangregorio LM (2021) Physical Activity and Bone Health in Men: A Systematic Review and Meta-Analysis. J Bone Metab 28(1):27–39. https://doi.org/10.11005/jbm.2021.28.1.27

    Article  PubMed  PubMed Central  Google Scholar 

  44. Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR (2004) American College of Sports Medicine Position Stand: physical activity and bone health. Med Sci Sports Exerc 36(11):1985–1996. https://doi.org/10.1249/01.mss.0000142662.21767.58

    Article  PubMed  Google Scholar 

  45. Gómez-Cabello A, Ara I, González-Agüero A, Casajús JA, Vicente-Rodríguez G (2012) Effects of training on bone mass in older adults: a systematic review. Sports Med 42(4):301–325. https://doi.org/10.2165/11597670-000000000-00000

    Article  PubMed  Google Scholar 

  46. Polidoulis I, Beyene J, Cheung AM (2012) The effect of exercise on pQCT parameters of bone structure and strength in postmenopausal women–a systematic review and meta-analysis of randomized controlled trials. Osteoporos Int 23(1):39–51. https://doi.org/10.1007/s00198-011-1734-7

    Article  CAS  PubMed  Google Scholar 

  47. Kerr D, Ackland T, Maslen B, Morton A, Prince R (2001) Resistance training over 2 years increases bone mass in calcium-replete postmenopausal women. J Bone Miner Res 16(1):175–181. https://doi.org/10.1359/jbmr.2001.16.1.175

    Article  CAS  PubMed  Google Scholar 

  48. Watson SL, Weeks BK, Weis LJ, Harding AT, Horan SA, Beck BR (2018) High-Intensity Resistance and Impact Training Improves Bone Mineral Density and Physical Function in Postmenopausal Women With Osteopenia and Osteoporosis: The LIFTMOR Randomized Controlled Trial. J Bone Miner Res 33(2):211–220. https://doi.org/10.1002/jbmr.3284

    Article  PubMed  Google Scholar 

  49. Zhao R, Zhang M, Zhang Q (2017) The Effectiveness of Combined Exercise Interventions for Preventing Postmenopausal Bone Loss: A Systematic Review and Meta-analysis. J Orthop Sports Phys Ther 47(4):241–251. https://doi.org/10.2519/jospt.2017.6969

    Article  PubMed  Google Scholar 

  50. Howe TE, Shea B, Dawson LJ, Downie F, Murray A, Ross C, Harbour RT, Caldwell LM, Creed G (2011) Exercise for preventing and treating osteoporosis in postmenopausal women. Cochrane Database Syst Rev 7:Cd000333. https://doi.org/10.1002/14651858.CD000333.pub2

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Robin Daly and Dr. Sonja Kukuljan for providing data for the statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yupeng Liu or Yangzhen Lu.

Ethics declarations

Statement of human rights

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

Not applicable.

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 575 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Wei, J., Liu, Y. et al. Effects of exercise on bone mineral density in middle-aged and older men: A comprehensive meta-analysis. Arch Osteoporos 18, 108 (2023). https://doi.org/10.1007/s11657-023-01317-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-023-01317-8

Keywords

Navigation