Skip to main content

Advertisement

Log in

Effects of robot-assisted minimally invasive surgery on osteoporotic vertebral compression fracture: a systematic review, meta-analysis, and meta-regression of retrospective study

  • Review Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Objective

To conduct a systematic review on the effect of robot-assisted minimally invasive surgery (R-MIS) on the clinical outcomes and complications of patients with osteoporotic vertebral compression fractures (OVCFs).

Methods

The researchers searched the papers published on PubMed, The Cochrane Library, Web of Science, Embase, Scopus, Ovid MEDLINE, Wiley Online Library, China National Knowledge Infrastructure (CNKI), Chinese biomedical literature service system (SinoMed), and China Medical Association Data. The standardized mean difference (SMD) or mean difference (MD), relative risk (RR), and 95% confidence interval (CI) were calculated. Besides, the data was merged through the random-effect model or common-effect model. A meta-regression mixed-effects single-factor model was utilized to analyze the sources of heterogeneity.

Results

Twelve studies were included, involving 1042 OVCFs cases. The prognosis of patients treated with R-MIS was significantly improved, such as Oswestry disability index (ODI) score (MD = -0.65, P = 0.0171), Cobb's angles (MD = -1.03, P = 0.0027), X-ray fluoroscopy frequency (SMD = -2.41, P < 0.0001), Length of hospital stay (MD = -0.33, P = 0.0002), and Cement leakage (RR = 0.37, P < 0.0001). However, no obvious improvement was found in the results of Visual analog scale (VAS) score (MD = -0.16, P = 0.1555), Volume of bone cement (MD = 0.22, P = 0.8339), and Operation time (MD = -3.20, P = 0.3411) after being treated by R-MIS. The meta-regression analysis demonstrated that R-MIS presented no significant impact on the covariates of VAS and Operation time.

Conclusion

R-MIS can significantly reduce the patients’ ODI, Cobb’s angles, X-ray fluoroscopy frequency, and Cement leakage ratio, and shorten the Length of hospital stay. Therefore, R-MIS may be an effective method to promote the patients’ functional recovery, correct spinal deformity, reduce the X-ray fluoroscopy frequency, shorten the Length of hospital stay, and reduce the complications of OVCFs bone Cement leakage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

MIS:

Minimally invasive surgery

R-MIS:

Robot-assisted minimally invasive surgery

OVCFs:

Osteoporotic vertebral compression fractures

PKP:

Percutaneous kyphoplasty

PVP:

Percutaneous vertebroplasty

R-PKP:

Robot-assisted percutaneous kyphoplasty

R-PVP:

Robot-assisted percutaneous vertebroplasty

VAS:

Visual analog scale

ODI:

Oswestry disability index

NOS:

Newcastle-Ottawa scale

RR:

Relative risk

MD:

Mean difference

SMD:

Standardized mean difference

SD:

Standard deviations

CI:

Confidence interval

References

  1. Ensrud KE, Schousboe JT (2011) Clinical practice. Vertebral fractures. N Engl J Med 364(17):1634–1642. https://doi.org/10.1056/NEJMcp1009697

    Article  CAS  PubMed  Google Scholar 

  2. Alexandru D, So W (2012) Evaluation and management of vertebral compression fractures. Perm J 16(4):46–51. https://doi.org/10.7812/TPP/12-037

    Article  PubMed  PubMed Central  Google Scholar 

  3. Silverman SL (1992) The clinical consequences of vertebral compression fracture. Bone 13(Suppl 2):S27–S31. https://doi.org/10.1016/8756-3282(92)90193-z

    Article  PubMed  Google Scholar 

  4. Si L, Winzenberg TM, Jiang Q, Chen M, Palmer AJ (2015) Projection of osteoporosis -related fractures and costs in China: 2010–2050. Osteoporos Int 26(7):1929–1937. https://doi.org/10.1007/s00198-015-3093-2

    Article  CAS  PubMed  Google Scholar 

  5. Hu L, Sun H, Wang H, Cai J, Tao Y, Feng X, Wang Y (2019) Cement injection and postoperative vertebral fractures during vertebroplasty. J Orthop Surg Res 14(1):228. https://doi.org/10.1186/s13018-019-1273-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Harrison Farber S, Nayar G, Desai R, Reiser EW, Byrd SA, Chi D, Idler C, Isaacs RE (2018) Radiation exposure to the surgeon during minimally invasive spine procedures is directly estimated by patient dose. Eur Spine J 27(8):1911–1917. https://doi.org/10.1007/s00586-018-5653-6

    Article  CAS  PubMed  Google Scholar 

  7. McCarthy J, Davis A (2016) Diagnosis and management of vertebral compression fractures. Am Fam Physician 94(1):44–50

    PubMed  Google Scholar 

  8. Zuo XH, Zhu XP, Bao HG, Xu CJ, Chen H, Gao XZ, Zhang QX (2018) Network meta-analysis of percutaneous vertebroplasty, percutaneous kyphoplasty, nerve block, and conservative treatment for nonsurgery options of acute/subacute and chronic osteoporotic vertebral compression fractures (OVCFs) in short-term and long-term effects. Medicine 97(29):e11544. https://doi.org/10.1097/MD.0000000000011544

    Article  PubMed  PubMed Central  Google Scholar 

  9. Longo UG, Loppini M, Denaro L, Maffulli N, Denaro V (2012) Osteoporotic vertebral fractures: current concepts of conservative care. Br Med Bull 102:171–189. https://doi.org/10.1093/bmb/ldr048

    Article  PubMed  Google Scholar 

  10. Yuan WH, Hsu HC, Lai KL (2016) Vertebroplasty and balloon kyphoplasty versus conservative treatment for osteoporotic vertebral compression fractures: a meta-analysis. Medicine 95(31):e4491. https://doi.org/10.1097/MD.0000000000004491

    Article  PubMed  PubMed Central  Google Scholar 

  11. Long Y, Yi W, Yang D (2020) Advances in vertebral augmentation systems for osteoporotic vertebral compression fractures. Pain Res Manag: 3947368. https://doi.org/10.1155/2020/3947368

  12. Manson NA, Phillips FM (2006) Minimally invasive techniques for the treatment of osteoporotic vertebral fractures. J Bone Joint Surg Am 88(8):1862–1872. https://doi.org/10.2106/00004623-200608000-00026

    Article  PubMed  Google Scholar 

  13. Yang H, Liu H, Wang S, Wu K, Meng B, Liu T (2016) Review of Percutaneous Kyphoplasty in China. Spine 41(Suppl 19):B52–B58. https://doi.org/10.1097/BRS.0000000000001804

    Article  PubMed  Google Scholar 

  14. Xiao Q, Zhao Y, Qu Z, Zhang Z, Wu K, Lin X (2021) Association between bone cement augmentation and new vertebral fractures in patients with osteoporotic vertebral compression fractures: a systematic review and meta-analysis. World Neurosurg 153:98-108.e3. https://doi.org/10.1016/j.wneu.2021.06.023

    Article  PubMed  Google Scholar 

  15. Mediouni M, Madiouni R, Gardner M, Vaughan N (2019) Translational medicine: challenges and new orthopaedic vision (Mediouni-Model). Curr Orthop Pract 31(2):1

    Google Scholar 

  16. Tian W (2016) Robot-assisted posterior C1–2 transarticular screw fixation for atlantoaxial instability: a case report. Spine 41(Suppl 19):B2–B5. https://doi.org/10.1097/BRS.0000000000001674

    Article  PubMed  Google Scholar 

  17. Zhang Q, Han XG, Xu YF, Fan MX, Zhao JW, Liu YJ, He D, Tian W (2020) Robotic navigation during spine surgery. Expert Rev Med Devices 17(1):27–32. https://doi.org/10.1080/17434440.2020.1699405

    Article  CAS  PubMed  Google Scholar 

  18. Spetzger U, Von Schilling A, Winkler G, Wahrburg J, König A (2013) The past, present and future of minimally invasive spine surgery: a review and speculative outlook. Minim Invasive Ther Allied Technol 22(4):227–241. https://doi.org/10.3109/13645706.2013.821414

    Article  PubMed  Google Scholar 

  19. Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson A, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ (Clin Res Ed) 372:n71. https://doi.org/10.1136/bmj.n71

    Article  Google Scholar 

  20. Amir-Behghadami M, Janati A (2020) Population, Intervention, Comparison, Outcomes and Study (PICOS) design as a framework to formulate eligibility criteria in systematic reviews. Emerg Med J 37(6):387. https://doi.org/10.1136/emermed-2020-209567

    Article  PubMed  Google Scholar 

  21. Higgins J, Thomas J, Chandler J, Cumpston M, Li T, Page M, Welch V (2022) Cochrane Handbook for Systematic Reviews of Interventions Version 6.3, 2022. Cochrane Training Web. https://www.training.cochrane.org/handbook. Accessed 8 June 2022

  22. Wells G, Shea B, O’Connell D, Peterson J, Welch V, Losos M, Tugwell P (2009) The New Castle-Ottawa Scale (NOS) for assessing the quality of nonrandomized studies on meta-analysis. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Accessed 14 June 2022

  23. Stang A (2010) Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol 25(9):603–605. https://doi.org/10.1007/s10654-010-9491-z

    Article  PubMed  Google Scholar 

  24. Kim SY, Park JE, Lee YJ, Seo HJ, Sheen SS, Hahn S, Jang BH, Son HJ (2013) Testing a tool for assessing the risk of bias for nonrandomized studies showed moderate reliability and promising validity. J Clin Epidemiol 66(4):408–414. https://doi.org/10.1016/j.jclinepi.2012.09.016

    Article  PubMed  Google Scholar 

  25. R Core Team (2019) R: A Language and Environment for Statistical Computing. Microsoft R Application Network. https://mran.microsoft.com/. Accessed 14 June 2022

  26. Shim SR, Kim SJ (2019) Intervention meta-analysis: application and practice using R software. Epidemiol Health 41:e2019008. https://doi.org/10.4178/epih.e2019008

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wolfgang V (2010) Conducting meta-analyses in R with the metafor package. J Stat Software 36.3. https://doi.org/10.18637/jss.v036.i03

  28. Balaji Y, Sankaranarayanan S, Chellappa R (2018) MetaReg: towards domain generalization using meta-regularization. Neural Information Processing Systems. Curran Associates Inc

  29. Schwarzer G (2022) Meta: General Package for Meta-Analysis. CRAN Package Web. https://cran.r-project.org/web/packages/meta/index.html. Accessed 14 June 2022

  30. Higgins JP, Thompson SG (2002) Quantifying heterogeneity in a meta-analysis. Stat Med 21(11):1539–1558. https://doi.org/10.1002/sim.1186

    Article  PubMed  Google Scholar 

  31. STATA (2022) Introduction to meta-analysis. STATA Web. https://www.stata.com/manuals/metaintro.pdf. Accessed 14 June 2022

  32. Higgins J, Thompson S, Deeks J, Altman D (2002) Statistical heterogeneity in systematic reviews of clinical trials: a critical appraisal of guidelines and practice. J Health Serv Res Policy 7(1):51–61. https://doi.org/10.1258/1355819021927674

    Article  PubMed  Google Scholar 

  33. Schmid CH, Stark PC, Berlin JA, Landais P, Lau J (2004) Meta-regression detected associations between heterogeneous treatment effects and study-level, but not patient-level, factors. J Clin Epidemiol 57(7):683–697. https://doi.org/10.1016/j.jclinepi.2003.12.001

    Article  PubMed  Google Scholar 

  34. López-López JA, Marín-Martínez F, Sánchez-Meca J, Van den Noortgate W, Viechtbauer W (2014) Estimation of the predictive power of the model in mixed-effects meta-regression: a simulation study. Br J Math Stat Psychol 67(1):30–48. https://doi.org/10.1111/bmsp.12002

    Article  PubMed  Google Scholar 

  35. Knapp G, Hartung J (2003) Improved tests for a random effects meta-regression with a single covariate. Stat Med 22(17):2693–2710. https://doi.org/10.1002/sim.1482

    Article  PubMed  Google Scholar 

  36. Higgins JP, Thompson SG (2004) Controlling the risk of spurious findings from meta-regression. Stat Med 23(11):1663–1682. https://doi.org/10.1002/sim.1752

    Article  PubMed  Google Scholar 

  37. Hayashino Y, Noguchi Y, Fukui T (2005) Systematic evaluation and comparison of statistical tests for publication bias. J Epidemiol 15(6):235–243. https://doi.org/10.2188/jea.15.235

    Article  PubMed  PubMed Central  Google Scholar 

  38. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50(4):1088–1101. https://doi.org/10.2307/2533446

    Article  CAS  PubMed  Google Scholar 

  39. Lin L, Chu H, Murad MH, Hong C, Qu Z, Cole SR, Chen Y (2018) Empirical comparison of publication bias tests in meta-analysis. J Gen Intern Med 33(8):1260–1267. https://doi.org/10.1007/s11606-018-4425-7

    Article  PubMed  PubMed Central  Google Scholar 

  40. Egger M, Davey Smith G, Schneider M, Minder C (1997) Bias in meta-analysis detected by a simple, graphical test. BMJ 315(7109):629–634. https://doi.org/10.1136/bmj.315.7109.629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Jin M, Ge M, Lei L, Li F, Wu M, Zhang G, Pei S, Zheng B (2021) Clinical and radiologic outcomes of robot-assisted kyphoplasty versus fluoroscopy-assisted kyphoplasty in the treatment of osteoporotic vertebral compression fractures: a retrospective comparative study. World Neurosurg. https://doi.org/10.1016/j.wneu.2021.10.066 (S1878–8750(21)01563–1. Advance online publication)

  42. Yuan W, Meng X, Cao W, Zhu Y (2022) Robot-assisted versus fluoroscopy-assisted kyphoplasty in the treatment of osteoporotic vertebral compression fracture: a retrospective study. Glob Spine J 12(6):1151–1157. https://doi.org/10.1177/2192568220978228

    Article  Google Scholar 

  43. Yuan W, Meng XT, Liu XC, Zhu HT, Chong L, Zhu Y (2021) Effectiveness of robot assisted percutaneous kyphoplasty for treatment of single/doublesegment osteoporotic vertebral compression fractures. Chin J Reparative Reconstr Surg 35:1000–1006. https://doi.org/10.7507/1002-1892.202103151

    Article  Google Scholar 

  44. Yuan W, Cao W, Meng X, Zhu H, Liu X, Cui C, Tao L, Zhu Y (2020) Learning curve of robot-assisted percutaneous kyphoplasty for osteoporotic vertebral compression fractures. World Neurosurg 138:e323–e329. https://doi.org/10.1016/j.wneu.2020.02.110

    Article  PubMed  Google Scholar 

  45. Lin S, Hu J, Tang LY, Wang Y, Yu Y, Zhang W (2020) Robot-guided percutaneous kyphoplasty in treatment of multi-segmental osteoporotic vertebral compression fracture. Chin J Reparative Reconstr Surg 34:1136–1141. https://doi.org/10.7507/1002-1892.202002131

    Article  Google Scholar 

  46. Lin S, Tan S, Hu J, Wan L, Wang Y (2022) Effectiveness of modified orthopedic robot-assisted percutaneous kyphoplasty in treatment of osteoporotic vertebral compression fracture. Chin J Reparative Reconstr Surg 36(9):1119–1125. https://doi.org/10.7507/1002-1892.202204013

    Article  Google Scholar 

  47. Wang B, Cao J, Chang J, Yin G, Cai W, Li Q, Huang Z, Yu L, Cao X (2021) Effectiveness of Tirobot-assisted vertebroplasty in treating thoracolumbar osteoporotic compression fracture. J Orthop Surg Res 16(1):65. https://doi.org/10.1186/s13018-021-02211-0

    Article  PubMed  PubMed Central  Google Scholar 

  48. Zhang ZT, Zhang XH, Wei ZH, Shi FS, Yang DH, Yang J, Ding JW (2018) Comparison of outcomes of robot assisted and conventional percutaneous vertebroplasty on osteoporotic vertebral compression fracture. J Clin Orthopedics Res 3:205–208. https://doi.org/10.19548/j.2096-269x.2018.04.004

    Article  Google Scholar 

  49. Zheng BL, Hao DJ, Lin B, Chang Z, Gao L, Yan L, Yang XB, Hui H, Fan SW, Deng ZL, Zhu Y, He BR (2021) Puncture assisted by a “TINAVI” orthopaedic robot versus freehand puncture in vertebroplaty for osteoporotic vertebral compression fracture of the upper thoracic vertebra. Chin J Orthopaedic Trauma 23:20–26. https://doi.org/10.3760/cma.j.cn115530-20200831-00564

    Article  Google Scholar 

  50. Shi B, Hu L, Du H, Zhang J, Zhao W, Zhang L (2021) Robot-assisted percutaneous vertebroplasty under local anaesthesia for osteoporotic vertebral compression fractures: a retrospective, clinical, non-randomized, controlled study. Int J Med Robot Comput Assisted Surg 17(3):e2216. https://doi.org/10.1002/rcs.2216

    Article  Google Scholar 

  51. Guo S, Fu Q, Hang DH, Hang DH, Li X, Huo NN, Ruan Q, Li KW (2021) Effectiveness of Mazor spine robot -assisted percutaneous vertebroplasty with modified approach in treating lumbar osteoporotic vertebral compression fractures. Chin J Spine Spinal Cord 31:818–824. https://doi.org/10.3969/j.issn.1004-406X.2021.09.06

    Article  Google Scholar 

  52. Yang N, Wang SB, Liu SF, Wang C, He Q, Cao Y (2022) Effectiveness of robot-assisted percutaneous vertebroplasty for osteoporotic vertebral compression fracture in the elderly. West China Med J 37(10):1471–1475. https://doi.org/10.7507/1002-0179.202108283

    Article  Google Scholar 

  53. Nishimura A, Akeda K, Kato K, Asanuma K, Yamada T, Uchida A, Sudo A (2014) Osteoporosis, vertebral fractures and mortality in a Japanese rural community. Mod Rheumatol 24(5):840–843. https://doi.org/10.3109/14397595.2013.866921

  54. Musbahi O, Ali AM, Hassany H, Mobasheri R (2018) Vertebral compression fractures. Br J Hosp Med (Lond, England: 2005) 79(1):36–40. https://doi.org/10.12968/hmed.2018.79.1.36

  55. Buchbinder R, Johnston RV, Rischin KJ, Homik J, Jones CA, Golmohammadi K, Kallmes DF (2018) Percutaneous vertebroplasty for osteoporotic vertebral compression fracture. Cochrane Database System Rev 11(11):CD006349. https://doi.org/10.1002/14651858.CD006349.pub4

  56. Zhang Y, Peng Q, Sun C, Kang X, Hu M, Zhao W, Liu X, Meng B, Yang S, Feng X, Zhang L (2022) Robot versus fluoroscopy-assisted vertebroplasty and kyphoplasty for osteoporotic vertebral compression fractures: a systematic review and meta-analysis. World Neurosurg 166:120–129

  57. Phillips FM (2003) Minimally invasive treatments of osteoporotic vertebral compression fractures. Spine 28(15 Suppl):S45–S53. https://doi.org/10.1097/01.BRS.0000076898.37566.32

  58. Li HM, Zhang RJ, Shen CL (2020) Accuracy of pedicle screw placement and clinical outcomes of robot-assisted technique versus conventional freehand technique in spine surgery from nine randomized controlled trials: a meta-analysis. Spine 45(2):E111–E119. https://doi.org/10.1097/BRS.0000000000003193

  59. Kochanski RB, Lombardi JM, Laratta JL, Lehman RA, O’Toole JE (2019) Image-guided navigation and robotics in spine surgery. Neurosurgery 84(6):1179–1189. https://doi.org/10.1093/neuros/nyy630

  60. Liebschner MA, Rosenberg WS, Keaveny TM (2001) Effects of bone cement volume and distribution on vertebral stiffness after vertebroplasty. Spine 26(14):1547–1554. https://doi.org/10.1097/00007632-200107150-00009

  61. Sielatycki JA, Mitchell K, Leung E, Lehman RA (2022) State of the art review of new technologies in spine deformity surgery-robotics and navigation. Spine Deformity 10(1):5–17. https://doi.org/10.1007/s43390-021-00403-6

  62. Bousson V, Hamze B, Odri G, Funck-Brentano T, Orcel P, Laredo JD (2018) Percutaneous vertebral augmentation techniques in osteoporotic and traumatic fractures. Semin Interv Radiol 35(4):309–323. https://doi.org/10.1055/s-0038-1673639

  63. Han X, Tian W, Liu Y, Liu B, He D, Sun Y, Han X, Fan M, Zhao J, Xu Y, Zhang Q (2019) Safety and accuracy of robot-assisted versus fluoroscopy-assisted pedicle screw insertion in thoracolumbar spinal surgery: a prospective randomized controlled trial. J Neurosurg Spine: 1–8. https://doi.org/10.3171/2018.10.SPINE18487

  64. Zhang Q, Xu YF, Tian W, Le XF, Liu B, Liu YJ, He D, Sun YQ, Yuan Q, Lang Z, Han XG (2019) Comparison of superior-level facet joint violations between robot-assisted percutaneous pedicle screw placement and conventional open fluoroscopic-guided pedicle screw placement. Orthop Surg 11(5):850–856. https://doi.org/10.1111/os.12534

  65. Hyun SJ, Kim KJ, Jahng TA, Kim HJ (2017) Minimally invasive robotic versus open fluoroscopic-guided spinal instrumented fusions: a randomized controlled trial. Spine 42(6):353–358. https://doi.org/10.1097/BRS.0000000000001778

  66. Kantelhardt SR, Martinez R, Baerwinkel S, Burger R, Giese A, Rohde V (2011) Perioperative course and accuracy of screw positioning in conventional, open robotic-guided and percutaneous robotic-guided, pedicle screw placement. Eur Spine J 20(6):860–868. https://doi.org/10.1007/s00586-011-1729-2

  67. Trumm CG, Jakobs TF, Zech CJ, Helmberger TK, Reiser MF, Hoffmann RT (2008) CT fluoroscopy-guided percutaneous vertebroplasty for the treatment of osteolytic breast cancer metastases: results in 62 sessions with 86 vertebrae treated. J Vasc Interv Radiol 19(11):1596–1606. https://doi.org/10.1016/j.jvir.2008.08.014

  68. Vardiman AB, Wallace DJ, Booher GA, Crawford NR, Riggleman JR, Greeley SL, Ledonio CG (2020) Does the accuracy of pedicle screw placement differ between the attending surgeon and resident in navigated robotic-assisted minimally invasive spine surgery? J Robot Surg 14(4):567–572. https://doi.org/10.1007/s11701-019-01019-9

  69. European Prospective Osteoporosis Study (EPOS) Group, Felsenberg D, Silman AJ, Lunt M, Armbrecht G, Ismail AA, Finn JD, Cockerill WC, Banzer D, Benevolenskaya LI, Bhalla A, Bruges Armas J, Cannata JB, Cooper C, Dequeker J, Eastell R, Felsch B, Gowin W, Havelka S, Hoszowski K, Jajic I, Janott J, Johnell O, Kanis JA, Kragl G, Lopes Vaz A, Lorenc R, Lyritis G, Masaryk P, Matthis C, Miazgowski T, Parisi G, Pols HA, Poor G, Raspe HH, Reid DM, Reisinger W, Schedit-Nave C, Stepan JJ, Todd CJ, Weber K, Woolf AD, Yershova OB, Reeve J, O'Neill TW Incidence of vertebral fracture in europe: results from the European Prospective Osteoporosis Study (EPOS). J Bone Miner Res 17(4):716–724. https://doi.org/10.1359/jbmr.2002.17.4.716

  70. Delmas PD, van de Langerijt L, Watts NB, Eastell R, Genant H, Grauer A, Cahall DL, IMPACT Study Group (2005) Underdiagnosis of vertebral fractures is a worldwide problem: the IMPACT study. J Bone Miner Res 20(4):557–563. https://doi.org/10.1359/JBMR.041214

  71. Cui L, Chen L, Xia W, Jiang Y, Cui L, Huang W, Wang W, Wang X, Pei Y, Zheng X, Wang Q, Ning Z, Li M, Wang O, Xing X, Lin Q, Yu W, Weng X, Xu L, Cummings SR (2017) Vertebral fracture in postmenopausal Chinese women: a population-based study. Osteoporos Int 28(9):2583–2590. https://doi.org/10.1007/s00198-017-4085-1

  72. Dai C, Liang G, Zhang Y, Dong Y, Zhou X (2022) Risk factors of vertebral re-fracture after PVP or PKP for osteoporotic vertebral compression fractures, especially in Eastern Asia: a systematic review and meta-analysis. J Orthop Surg Res 17(1):161. https://doi.org/10.1186/s13018-022-0303

Download references

Author information

Authors and Affiliations

Authors

Contributions

YMF, XW contributed to the study concept and design. HQC, JL, and YMF conducted the literature review and statistical analysis. All authors contributed to the interpretation of data. HQC and YMF contributed to drafting the paper. All authors revised the text for intellectual content and have read and approved the final version of the manuscript.

Corresponding author

Correspondence to Yanming Fu.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This meta-analysis met the guidelines provided by the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA).

The International Open Science Framework Registry Link is https://doi.org/10.17605/OSF.IO/T4EBF.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 51 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, H., Li, J., Wang, X. et al. Effects of robot-assisted minimally invasive surgery on osteoporotic vertebral compression fracture: a systematic review, meta-analysis, and meta-regression of retrospective study. Arch Osteoporos 18, 46 (2023). https://doi.org/10.1007/s11657-023-01234-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-023-01234-w

Keywords

Navigation