Skip to main content
Log in

Bone accrual over 18 months of participation in different loading sports during adolescence

  • Original Article
  • Published:
Archives of Osteoporosis Aims and scope Submit manuscript

Abstract

Summary

This study investigated the impact and non-impact sports on bone mineral density accrual in adolescents over 18 months. The impact sports were beneficial for bone health (accrual of bone density). In contrast, swimmers had similar or lower bone mineral density compared with the control group depending on the skeletal site.

Purpose

To investigate the impact and non-impact sports on bone mineral density (BMD) accrual in adolescents over a period of 18 months

Methods

The sample was composed of 71 adolescents, avarage age of 12.7 (± 1.7) years old at baseline. Bone outcomes were compared according to the loading of the sports practiced (impact sports, n = 33 [basketball, karate, and judo], non-impact sport, n = 18 [swimming], and control group, n = 20). Areal bone mineral density (aBMD) was measured by dual-energy X-ray absorptiometry (DXA) and bone mineral apparent density (BMAD) estimated through equation. The results were compared between the groups using analysis of variance and analysis of covariance.

Results

Adjusted aBMD at lower limbs, whole body less head (WBLH), and adjusted WBLH BMAD were significantly greater in the impact sport group than the non-impact sport group at all time points. Adjusted upper limbs aBMD was significantly higher at the impact sports group compared to the non-impact sport group at 9 months and 18 months, besides compared to the control group at baseline and 18 months. Non-impact sport group presented a significant lower adjusted aBMD compared with control group at lower limbs and WBLH at 9 months, and at 9 months and 18 months in WBLH BMAD. There was a significant interaction (time × sport group) at upper limbs (p = 0.042) and WBLH aBMD (p = 0.006), and WBLH BMAD (p < 0.001).

Conclusion

Impact sports were more beneficial on accumulating aBMD and BMAD over a period of 18 months, while non-impact group (swimmers) had similar and lower aBMD and BMAD compared with the control group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Pérez-López FR, Chedraui P, Cuadros-López JL (2010) Bone mass gain during puberty and adolescence: deconstructing gender characteristics. Curr Med Chem 17:453–466. https://doi.org/10.2174/092986710790226138

    Article  PubMed  Google Scholar 

  2. Baxter-Jones ADG, Faulkner RA, Forwood MR, Mirwald RL, Bailey DA (2011) Bone mineral accrual from 8 to 30 years of age: an estimation of peak bone mass. J Bone Miner Res 26:1729–1739. https://doi.org/10.1002/jbmr.412

    Article  PubMed  Google Scholar 

  3. Rizzoli R, Bianchi ML, Garabédian M, McKay H, Moreno LA (2010) Maximizing bone mineral mass gain during growth for the prevention of fractures in the adolescents and the elderly. Bone 46:294–305. https://doi.org/10.1016/j.bone.2009.10.005

    Article  PubMed  Google Scholar 

  4. Smith DM, Nance WE, Kang KW, Christian JC, Johnston CC Jr (1973) Genetic factors in determining bone mass. J Clin Invest 52:2800–2808. https://doi.org/10.1172/JCI107476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Vasikaran S, Cooper C, Eastell R, Griesmacher A, Morris HA, Trenti T, Kanis JA (2011) International Osteoporosis Foundation and International Federation of Clinical Chemistry and Laboratory Medicine position on bone marker standards in osteoporosis. Clin Chem Lab Med 49:1271–1274. https://doi.org/10.1515/CCLM.2011.602

    Article  CAS  PubMed  Google Scholar 

  6. Mouratidou T, Vicente-Rodriguez G, Gracia-Marco L, Huybrechts I, Sioen I, Widhalm K, Valtueña J, González-Gross M, Moreno LA, HELENA Study Group (2013) Associations of dietary calcium, vitamin D, milk intakes, and 25-hydroxyvitamin D with bone mass in Spanish adolescents: the HELENA study. J Clin Densitom 16:110–117. https://doi.org/10.1016/j.jocd.2012.07.008

    Article  PubMed  Google Scholar 

  7. Vlachopoulos D, Barker AR, Williams CA, Arngrímsson S, Knapp KM, Metcalf BS, Fatouros IG, Moreno LA, Gracia-Marco L (2017) The impact of sport participation on bone mass and geometry in male adolescents. Med Sci Sports Exerc 49:317–326. https://doi.org/10.1249/MSS.0000000000001091

    Article  PubMed  Google Scholar 

  8. Eisman JA (1999) Genetics of osteoporosis. Endocr Rev 20:788–804. https://doi.org/10.1210/edrv.20.6.0384

    Article  CAS  PubMed  Google Scholar 

  9. Kohrt WM, Bloomfield SA, Little KD, Nelson ME, Yingling VR, American College of Sports Medicine (2004) American College of Sports Medicine position stand: physical activity and bone health. Med Sci Sports Exerc 36:1985–1996. https://doi.org/10.1249/01.mss.0000142662.21767.58

    Article  PubMed  Google Scholar 

  10. Tenforde AS, Fredericson M (2011) Influence of sports participation on bone health in the young athlete: a review of the literature. PM R 3:861–867. https://doi.org/10.1016/j.pmrj.2011.05.019

    Article  PubMed  Google Scholar 

  11. Rauch F, Bailey DA, Baxter-Jones A, Mirwald R, Faulkner R (2004) The “muscle-bone unit” during the pubertal growth spurt. Bone 34:771–775. https://doi.org/10.1016/j.bone.2004.01.022

    Article  PubMed  Google Scholar 

  12. Strong WB, Malina RM, Blimkie CJR, Daniels SR, Dishman RK, Gutin B, Hergenroeder AC, Must A, Nixon PA, Pivarnik JM, Rowland T, Trost S, Trudeau F (2005) Evidence based physical activity for school-age youth. J Pediatr 146:732–737. https://doi.org/10.1016/j.jpeds.2005.01.055

    Article  PubMed  Google Scholar 

  13. Patel DR, Yamasaki A, Brown K (2017) Epidemiology of sports-related musculoskeletal injuries in young athletes in United States. Transl Pediatr 6:160–166. https://doi.org/10.21037/tp.2017.04.08

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ubago-Guisado E, Gómez-Cabello A, Sánchez-Sánchez J, García-Unanue J, Gallardo L (2015) Influence of different sports on bone mass in growing girls. J Sports Sci 33:1710–1718. https://doi.org/10.1080/02640414.2015.1004639

    Article  PubMed  Google Scholar 

  15. Ubago-Guisado E, García-Unanue J, López-Fernández J, Sánchez-Sánchez J, Gallardo L (2017) Association of different types of playing surfaces with bone mass in growing girls. J Sports Sci 35:1484–1492. https://doi.org/10.1080/02640414.2016.1223328

    Article  PubMed  Google Scholar 

  16. Agostinete R, Maillane-Vanegas S, Lynch KR, Turi-Lynch B, Coelho-E-Silva MJ, Campos EZ, Cayres SU, Araújo Fernandes R (2017) The impact of training load on bone mineral density of adolescent swimmers: a structural equation modeling approach. Pediatr Exerc Sci 29:520–528. https://doi.org/10.1123/pes.2017-0008

    Article  PubMed  Google Scholar 

  17. Bielemann RM, Martinez-Mesa J, Gigante DP (2013) Physical activity during life course and bone mass: a systematic review of methods and findings from cohort studies with young adults. BMC Musculoskelet Disord 14:77. https://doi.org/10.1186/1471-2474-14-77

    Article  PubMed  PubMed Central  Google Scholar 

  18. Nikander R, Kannus P, Rantalainen T et al (2010) Cross-sectional geometry of weight-bearing tibia in female athletes subjected to different exercise loadings. Osteoporos Int 21:1687–1694. https://doi.org/10.1007/s00198-009-1101-0

    Article  CAS  PubMed  Google Scholar 

  19. Zribi A, Zouch M, Chaari H, Bouajina E, Zaouali M, Nebigh A, Tabka Z (2014) Enhanced bone mass and physical fitness in prepubescent basketball players. J Clin Densitom 17:156–162. https://doi.org/10.1016/j.jocd.2013.04.001

    Article  PubMed  Google Scholar 

  20. Ireland A, Maden-Wilkinson T, McPhee J, Cooke K, Narici M, Degens H, Rittweger J (2013) Upper limb muscle-bone asymmetries and bone adaptation in elite youth tennis players. Med Sci Sports Exerc 45:1749–1758. https://doi.org/10.1249/MSS.0b013e31828f882f

    Article  PubMed  Google Scholar 

  21. Ito IH, Mantovani AM, Agostinete RR et al (2016) Practice of martial arts and bone mineral density in adolescents of both sexes. Rev Paul Pediatr (English Ed) 34:210–215. https://doi.org/10.1016/j.rppede.2015.09.003

    Article  Google Scholar 

  22. Tervo T, Nordström P, Nordström A (2010) Effects of badminton and ice hockey on bone mass in young males: a 12-year follow-up. Bone 47:666–672. https://doi.org/10.1016/j.bone.2010.06.022

    Article  PubMed  Google Scholar 

  23. Vlachopoulos D, Ubago-Guisado E, Barker AR, Metcalf BS, Fatouros IG, Avloniti A, Knapp KM, Moreno LA, Williams CA, Gracia-Marco L (2017) Determinants of bone outcomes in adolescent athletes at baseline: the PRO-BONE study. Med Sci Sports Exerc 49:1389–1396. https://doi.org/10.1249/MSS.0000000000001233

    Article  PubMed  Google Scholar 

  24. Agostinete RR, Lynch KR, Gobbo LA, Lima MC, Ito IH, Luiz-de-Marco R, Rodrigues-Junior MA, Fernandes RA (2016) Basketball affects bone mineral density accrual in boys more than swimming and other impact sports: 9-mo follow-up. J Clin Densitom 19:375–381. https://doi.org/10.1016/j.jocd.2016.04.006

    Article  PubMed  Google Scholar 

  25. Vlachopoulos D, Barker AR, Ubago-Guisado E, Ortega FB, Krustrup P, Metcalf B, Castro Pinero J, Ruiz JR, Knapp KM, Williams CA, Moreno LA, Gracia-Marco L (2018) The effect of 12-month participation in osteogenic and non-osteogenic sports on bone development in adolescent male athletes. The PRO-BONE study. J Sci Med Sport 21:404–409. https://doi.org/10.1016/j.jsams.2017.08.018

    Article  PubMed  Google Scholar 

  26. Zouch M, Vico L, Frere D, Tabka Z, Alexandre C (2014) Young male soccer players exhibit additional bone mineral acquisition during the peripubertal period: 1-year longitudinal study. Eur J Pediatr 173:53–61. https://doi.org/10.1007/s00431-013-2115-3

    Article  PubMed  Google Scholar 

  27. Collins AC, Ward KD, McClanahan BS, Slawson DL, Vukadinovich C, Mays KE, Wilson N, Relyea G (2019) Bone accrual in children and adolescent nonelite swimmers: a 2-year longitudinal study. Clin J Sport Med 29:43–48. https://doi.org/10.1097/JSM.0000000000000484

    Article  PubMed  PubMed Central  Google Scholar 

  28. Behringer M, Gruetzner S, McCourt M, Mester J (2014) Effects of weight-bearing activities on bone mineral content and density in children and adolescents: a meta-analysis. J Bone Miner Res 29:467–478. https://doi.org/10.1002/jbmr.2036

    Article  PubMed  Google Scholar 

  29. Zouch M, Zribi A, Alexandre C et al Soccer increases bone mass in prepubescent boys during growth: a 3-yr longitudinal study. J Clin Densitom 18:179–186. https://doi.org/10.1016/j.jocd.2014.10.004

  30. Katzman DK, Bachrach LK, Carter DR, Marcus R (1991) Clinical and anthropometric correlates of bone mineral acquisition in healthy adolescent girls. J Clin Endocrinol Metab 73:1332–1339. https://doi.org/10.1210/jcem-73-6-1332

    Article  CAS  PubMed  Google Scholar 

  31. Maillane-Vanegas S, Agostinete RR, Lynch KR et al (2018) Bone mineral density and sports participation. J Clin Densitom (in press). https://doi.org/10.1016/j.jocd.2018.05.041

  32. Petit MA, McKay HA, MacKelvie KJ, Heinonen A, Khan KM, Beck TJ (2002) A randomized school-based jumping intervention confers site and maturity-specific benefits on bone structural properties in girls: a hip structural analysis study. J Bone Miner Res 17:363–372. https://doi.org/10.1359/jbmr.2002.17.3.363

    Article  CAS  PubMed  Google Scholar 

  33. International Society for Clinical Densitometry (2013) Skeletal health assessment in children from infancy to adolescence

  34. Moreira OC, de Oliveira CEP, De Paz JA (2018) Dual energy X-ray absorptiometry (DXA) reliability and intraobserver reproducibility for segmental body composition measuring. Nutr Hosp 35:340–345. https://doi.org/10.20960/nh.1295

    Article  PubMed  Google Scholar 

  35. GE Healthcare Lunar (2010) enCORE-Based X-ray Bone Densitometer: User Manual

  36. Moore SA, McKay HA, Macdonald H et al (2015) Enhancing a somatic maturity prediction model. Med Sci Sports Exerc 47:1755–1764. https://doi.org/10.1249/MSS.0000000000000588

    Article  PubMed  Google Scholar 

  37. Wilkinson K, Vlachopoulos D, Klentrou P, Ubago-Guisado E, de Moraes AC, Barker AR, Williams CA, Moreno LA, Gracia-Marco L (2017) Soft tissues, areal bone mineral density and hip geometry estimates in active young boys: the PRO-BONE study. Eur J Appl Physiol 117:833–842. https://doi.org/10.1007/s00421-017-3568-2

    Article  CAS  PubMed  Google Scholar 

  38. Seeman E (2002) An exercise in geometry. J Bone Miner Res 17:373–380. https://doi.org/10.1359/jbmr.2002.17.3.373

    Article  PubMed  Google Scholar 

  39. Hind K, Burrows M (2007) Weight-bearing exercise and bone mineral accrual in children and adolescents: a review of controlled trials. Bone 40:14–27. https://doi.org/10.1016/j.bone.2006.07.006

    Article  CAS  PubMed  Google Scholar 

  40. Ferry B, Duclos M, Burt L, Therre P, le Gall F, Jaffré C, Courteix D (2011) Bone geometry and strength adaptations to physical constraints inherent in different sports: comparison between elite female soccer players and swimmers. J Bone Miner Metab 29:342–351. https://doi.org/10.1007/s00774-010-0226-8

    Article  PubMed  Google Scholar 

  41. Dias Quiterio AL, Carnero EA, Baptista FM, Sardinha LB (2011) Skeletal mass in adolescent male athletes and nonathletes: relationships with high-impact sports. J Strength Cond Res 25:3439–3447. https://doi.org/10.1519/JSC.0b013e318216003b

    Article  PubMed  Google Scholar 

  42. Ito IH, Kemper HCG, Agostinete RR, Lynch KR, Christofaro DGD, Ronque ER, Fernandes RA (2017) Impact of martial arts (judo, karate, and kung fu) on bone mineral density gains in adolescents of both genders: 9-month follow-up. Pediatr Exerc Sci 29:496–503. https://doi.org/10.1123/pes.2017-0019

    Article  PubMed  Google Scholar 

  43. Duckham RL, Baxter-Jones ADG, Johnston JD, Vatanparast H, Cooper D, Kontulainen S (2014) Does physical activity in adolescence have site-specific and sex-specific benefits on young adult bone size, content, and estimated strength? J Bone Miner Res 29:479–486. https://doi.org/10.1002/jbmr.2055

    Article  PubMed  Google Scholar 

  44. Vlachopoulos D, Barker AR, Ubago-Guisado E, Fatouros IG, Knapp KM, Williams CA, Gracia-Marco L (2017) Longitudinal adaptations of bone mass, geometry, and metabolism in adolescent male athletes: the PRO-BONE study. J Bone Miner Res 32:2269–2277. https://doi.org/10.1002/jbmr.3206

    Article  CAS  PubMed  Google Scholar 

  45. Gomez-Bruton A, Montero-Marín J, González-Agüero A, García-Campayo J, Moreno LA, Casajús JA, Vicente-Rodríguez G (2016) The effect of swimming during childhood and adolescence on bone mineral density: a systematic review and meta-analysis. Sports Med 46:365–379. https://doi.org/10.1007/s40279-015-0427-3

    Article  PubMed  Google Scholar 

  46. Ubago-Guisado E, Vlachopoulos D, Ferreira de Moraes AC, Torres-Costoso A, Wilkinson K, Metcalf B, Sánchez-Sánchez J, Gallardo L, Gracia-Marco L (2017) Lean mass explains the association between muscular fitness and bone outcomes in 13-year-old boys. Acta Paediatr 106:1658–1665. https://doi.org/10.1111/apa.13972

    Article  PubMed  Google Scholar 

  47. Gourgoulis V, Boli A, Aggeloussis N, Toubekis A, Antoniou P, Kasimatis P, Vezos N, Michalopoulou M, Kambas A, Mavromatis G (2014) The effect of leg kick on sprint front crawl swimming. J Sports Sci 32:278–289. https://doi.org/10.1080/02640414.2013.823224

    Article  PubMed  Google Scholar 

  48. Greene DA, Naughton GA, Bradshaw E, Moresi M, Ducher G (2012) Mechanical loading with or without weight-bearing activity: influence on bone strength index in elite female adolescent athletes engaged in water polo, gymnastics, and track-and-field. J Bone Miner Metab 30:580–587. https://doi.org/10.1007/s00774-012-0360-6

    Article  PubMed  Google Scholar 

  49. Nemet D, Oh Y, Kim H-S, Hill M, Cooper DM (2002) Effect of intense exercise on inflammatory cytokines and growth mediators in adolescent boys. Pediatrics 110:681–689. https://doi.org/10.1542/peds.110.4.681

    Article  PubMed  Google Scholar 

  50. Ormsbee MJ, Arciero PJ (2012) Detraining increases body fat and weight and decreases VO2peak and metabolic rate. J Strength Cond Res 26:2087–2095. https://doi.org/10.1519/JSC.0b013e31823b874c

    Article  PubMed  Google Scholar 

  51. Gómez-Bruton A, González-Agüero A, Gómez-Cabello A, Matute-Llorente A, Casajús JA, Vicente-Rodríguez G (2016) Swimming and bone: is low bone mass due to hypogravity alone or does other physical activity influence it? Osteoporos Int 27:1785–1793. https://doi.org/10.1007/s00198-015-3448-8

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge Sao Paulo Research Foundation (FAPESP) and the effort of the participants and their parents and coaches.

Funding

This study was supported by the São Paulo Research Foundation-FAPESP (Process 2013/06963-5, 2015/13543-8, 2016/06920-2, 2017/09182-5, and 2018/24164-6). AOW received a grant from the FAPESP (2017/27234-2). SMJ received a grant from the FAPESP (2016/20354-0), and KRL received a grant from the FAPESP (2016/20377-0).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ricardo Ribeiro Agostinete.

Ethics declarations

Conflicts of interest

None.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Agostinete, R.R., Vlachopoulos, D., Werneck, A.O. et al. Bone accrual over 18 months of participation in different loading sports during adolescence. Arch Osteoporos 15, 64 (2020). https://doi.org/10.1007/s11657-020-00727-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11657-020-00727-2

Keywords

Navigation