Skip to main content
Log in

Mechanism of Qili Qiangxin Capsule for Heart Failure Based on miR133a-Endoplasmic Reticulum Stress

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To investigate the pharmacological mechanism of Qili Qiangxin Capsule (QLQX) improvement of heart failure (HF) based on miR133a-endoplasmic reticulum stress (ERS) pathway.

Methods

A left coronary artery ligation-induced HF after myocardial infarction model was used in this study. Rats were randomly assigned to the sham group, the model group, the QLQX group [0.32 g/(kg·d)], and the captopril group [2.25 mg/(kg·d)], 15 rats per group, followed by 4 weeks of medication. Cardiac function such as left ventricular ejection fraction (EF), fractional shortening (FS), left ventricular systolic pressure (LVSP), left ventricular end diastolic pressure (LVEDP), the maximal rate of increase of left ventricular pressure (+dp/dt max), and the maximal rate of decrease of left ventricular pressure (−dp/dt max) were monitored by echocardiography and hemodynamics. Hematoxylin and eosin (HE) and Masson stainings were used to visualize pathological changes in myocardial tissue. The mRNA expression of miR133a, glucose-regulated protein78 (GRP78), inositol-requiring enzyme 1 (IRE1), activating transcription factor 6 (ATF6), X-box binding protein1 (XBP1), C/EBP homologous protein (CHOP) and Caspase 12 were detected by RT-PCR. The protein expression of GRP78, p-IRE1/IRE1 ratio, cleaved-ATF6, XBP1-s (the spliced form of XBP1), CHOP and Caspase 12 were detected by Western blot. TdT-mediated dUTP nick-end labeling (TUNEL) staining was used to detect the rate of apoptosis.

Results

QLQX significantly improved cardiac function as evidenced by increased EF, FS, LVSP, +dp/dt max, −dp/dt max, and decreased LVEDP (P<0.05, P<0.01). HE staining showed that QLQX ameliorated cardiac pathologic damage to some extent. Masson staining indicated that QLQX significantly reduced collagen volume fraction in myocardial tissue (P<0.01). Results from RT-PCR and Western blot showed that QLQX significantly increased the expression of miR133a and inhibited the mRNA expressions of GRP78, IRE1, ATF6 and XBP1, as well as decreased the protein expressions of GRP78, cleaved-ATF6 and XBP1-s and decreased p-IRE1/IRE1 ratio (P<0.05, P<0.01). Further studies showed that QLQX significantly reduced the expression of CHOP and Caspase12, resulting in a significant reduction in apoptosis rate (P<0.05, P<0.01).

Conclusion

The pharmacological mechanism of QLQX in improving HF is partly attributed to its regulatory effect on the miR133a-IRE1/XBP1 pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  1. Virani SS, Alonso A, Aparicio HJ, Benjamin EJ, Bittencourt MS, Callaway CW, et al. Heart disease and stroke statistics—2021 update: a report from the american heart association. Circulation 2021;143:e254–e743.

    Article  PubMed  Google Scholar 

  2. Martens MD, Karch J, Gordon JW. The molecular mosaic of regulated cell death in the cardiovascular system. Biochim Biophys Acta Mol Basis Dis 2022;1868:166297.

    Article  CAS  PubMed  Google Scholar 

  3. Wang Q, Zhou H, Zhu X, Jiang F, Yu Q, Zhang J, et al. miR-208 inhibits myocardial tissues apoptosis in mice with acute myocardial infarction by targeting inhibition of PDCD4. J Biochem Mol Toxicol 2022;36:e23202.

    Article  CAS  PubMed  Google Scholar 

  4. Frantz S, Hundertmark MJ, Schulz-Menger J, Bengel FM, Bauersachs J. Left ventricular remodelling post-myocardial infarction: Pathophysiology, imaging, and novel therapies. Eur Heart J 2022;43:2549–2561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lin R, Su Z, Tan X, Su Y, Chen Y, Shu X, et al. Effect of endoplasmic reticulum stress and autophagy in the regulation of post-infarct cardiac repair. Arch Med Res 2018;49:576–582.

    Article  CAS  PubMed  Google Scholar 

  6. Fan M, Zhang J, Zeng L, Wang D, Chen J, Xi X, et al. Non-coding RNA mediates endoplasmic reticulum stress-induced apoptosis in heart disease. Heliyon 2023;9:e16246.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tual-Chalot S, Stellos K. microRNA-based therapy of postmyocardial infarction heart failure. Hellenic J Cardiol 2021;62:149–151.

    Article  PubMed  Google Scholar 

  8. Puthanveetil P, O’hagan KP. miR-133a-A potential target for improving cardiac mitochondrial health and regeneration after injury. J Cardiovasc Pharmacol 2022;80:187–193.

    Article  CAS  PubMed  Google Scholar 

  9. Yang H, He X, Wang C, Zhang L, Yu J, Wang K. Knockdown of tug 1 suppresses hypoxia-induced apoptosis of cardiomyocytes by up-regulating miR-133a. Arch Biochem Biophys 2020;681:108262.

    Article  CAS  PubMed  Google Scholar 

  10. Li X, Zhang J, Huang J, Ma A, Yang J, Li W, et al. A multicenter, randomized, double-blind, parallel-group, placebo-controlled study of the effects of Qili Qiangxin Capsules in patients with chronic heart failure. J Am Coll Cardiol 2013;62:1065–1072.

    Article  PubMed  Google Scholar 

  11. Tang XY, Dai ZQ, Zeng JX, Li ZT, Fan CL, Yao ZH, et al. Pharmacokinetics, hepatic disposition, and heart tissue distribution of 14 compounds in rat after oral administration of Qi-li-qiang-xin Capsule via ultra-high-performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry. J Sep Sci 2022;45:2177–2189.

    Article  CAS  PubMed  Google Scholar 

  12. Zhao Q, Li H, Chang L, Wei C, Yin Y, Bei H, et al. Qili Qiangxin attenuates oxidative stress-induced mitochondrion-dependent apoptosis in cardiomyocytes via PI3K/AKT/GSK3β signaling pathway. Biol Pharm Bull 2019;42:1310–1321.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng W, Wang L, Yang T, Wu A, Wang B, Li T, et al. Qili Qiangxin Capsules optimize cardiac metabolism flexibility in rats with heart failure after myocardial infarction. Front Physiol 2020;11:805.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lu Y, Xiang M, Xin L, Zhang Y, Wang Y, Shen Z, et al. Qili Qiangxin modulates the gut microbiota and NLRP3 inflammasome to protect against ventricular remodeling in heart failure. Front Pharmacol 2022;13:905424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang W, Zhang A, Han Y, Su X, Chen Y, Zhao W, et al. Cyclin-dependent kinase inhibitor 2b controls fibrosis and functional changes in ischemia-induced heart failure via the BMI1-p15-rb signalling pathway. Can J Cardiol 2021;37:655–664.

    Article  PubMed  Google Scholar 

  16. Zhang J, Wei C, Wang H, Tang S, Jia Z, Wang L, et al. Protective effect of Qili Qiangxin Capsule on energy metabolism and myocardial mitochondria in pressure overload heart failure rats. Evid Based Complement Alternat Med 2013;2013:378298.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Leung AYL, Chen H, Jia Z, Li X, Shen J. Study protocol: traditional Chinese medicine syndrome differentiation for heart failure patients and its implication for long-term therapeutic outcomes of the Qili Qiangxin Capsules. Chin Med 2021;16:103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Fan C, Tang X, Ye M, Zhu G, Dai Y, Yao Z, et al. Qi-li-qiang-xin alleviates isoproterenol-induced myocardial injury by inhibiting excessive autophagy via activating akt/mtor pathway. Front Pharmacol 2019;10:1329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tao L, Shen S, Fu S, Fang H, Wang X, Das S, et al. Traditional Chinese medication Qili Qiangxin attenuates cardiac remodeling after acute myocardial infarction in mice. Sci Rep 2015;5:8374.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hu YX, Qiu SL, Shang JJ, Wang Z, Lai XL. Pharmacological effects of botanical drugs on myocardial metabolism in chronic heart failure. Chin J Integr Med 2023 [Epub ahead of print].

  21. Xu XM, Yang Y, Zhou GD, Du ZX, Zhang XH, Mao W, et al. Clinical efficacy of Qili Qiangxin capsule combined with western medicine in the treatment of chronic heart failure: a systematic review and meta-analysis. Evid-Based Complementary Alternat Med 2021;2021.

  22. Zhang X, Azhar G, Helms SA, Wei JY. Regulation of cardiac microRNAs by serum response factor. J Biomed Sci 2011;18:15.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mughal W, Nguyen L, Pustylnik S, Da Silva Rosa SC, Piotrowski S, Chapman D, et al. A conserved madsbox phosphorylation motif regulates differentiation and mitochondrial function in skeletal, cardiac, and smooth muscle cells. Cell Death Dis 2015;6:e1944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Di Mauro V, Crasto S, Colombo FS, Di Pasquale E, Catalucci D. Wnt signalling mediates miR-133a nuclear re-localization for the transcriptional control of DNMT3b in cardiac cells. Sci Rep 2019;9:9320.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Renaud L, Harris LG, Mani SK, Kasiganesan H, Chou JC, Baicu CF, et al. HDACs regulate miR-133a expression in pressure overload-induced cardiac fibrosis. Circ Heart Fail 2015;8:1094–1104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Si X, Zheng H, Wei G, Li M, Li W, Wang H, et al. CircRNA HIPK3 induces cardiac regeneration after myocardial infarction in mice by binding to notch1 and miR-133a. Mol Ther Nucleic Acids 2020;21:636–655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Li S, Xiao FY, Shan PR, Su L, Chen DL, Ding JY, et al. Overexpression of microRNA-133a inhibits ischemia-reperfusion-induced cardiomyocyte apoptosis by targeting DAPK2. J Hum Genet 2015;60:709–716.

    Article  CAS  PubMed  Google Scholar 

  28. Qu Y, Gao R, Wei X, Sun X, Yang K, Shi H, et al. Gasdermin D mediates endoplasmic reticulum stress via FAM134b to regulate cardiomyocyte autophagy and apoptosis in doxorubicin-induced cardiotoxicity. Cell Death Dis 2022;13:901.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ren L, Wang Q, Chen Y, Ma Y, Wang D. Involvement of microRNA-133a in the protective effect of hydrogen sulfide against ischemia/reperfusion-induced endoplasmic reticulum stress and cardiomyocyte apoptosis. Pharmacology 2019;103:1–9.

    Article  CAS  PubMed  Google Scholar 

  30. Feng J, Li S, Chen H. Tanshinone II A ameliorates apoptosis of cardiomyocytes induced by endoplasmic reticulum stress. Exp Biol Med (Maywood) 2016;241:2042–2048.

    Article  CAS  PubMed  Google Scholar 

  31. Yang FW, Fu Y, Li Y, He YH, Mu MY, Liu QC, et al. Prostaglandin E1 protects hepatocytes against endoplasmic reticulum stress-induced apoptosis via protein kinase A-dependent induction of glucose-regulated protein 78 expression. World J Gastroenterol 2017;23:7253–7264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Martinez-Amaro FJ, Garcia-Padilla C, Franco D, Daimi H. LncRNAs and circRNAs in endoplasmic reticulum stress: A promising target for cardiovascular disease? Int J Mol Sci 2023;24:9888.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Adams CJ, Kopp MC, Larburu N, Nowak PR, Ali MMU. Structure and molecular mechanism of ER stress signaling by the unfolded protein response signal activator IRE1. Front Mol Biosci 2019;6:11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luo X, Alfason L, Wei M, Wu S, Kasim V. Spliced or unspliced, that is the question: the biological roles of XBP1 isoforms in pathophysiology. Int J Mol Sci 2022;23:2746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Mondal A, Burchat N, Sampath H. Palmitate exacerbates bisphenol a toxicity via induction of ER stress and mitochondrial dysfunction. Biochim Biophys Acta Mol Cell Biol Lipids 2021;1866:158816.

    Article  CAS  PubMed  Google Scholar 

  36. Frangogiannis NG. Transforming growth factor-β in myocardial disease. Nat Rev Cardiol 2022;19:435–455.

    Article  CAS  PubMed  Google Scholar 

  37. Chai R, Ye Z, Xue W, Shi S, Wei Y, Hu Y, et al. Tanshinone II A inhibits cardiomyocyte pyroptosis through TLR4/NF-κB p65 pathway after acute myocardial infarction. Front Cell Dev Biol 2023;11:1252942.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Mcdonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Böhm M, et al. 2023 Focused update of the 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure. Eur Heart J 2023;44:3627–3639.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Wu AM designed the general study and revised the manuscript. Zhao MJ guided the manuscript writing ideas as well as provided important advice on the experimental design.

Corresponding author

Correspondence to Ai-ming Wu.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Supported by 2022 Science and Technology Innovation Project of Dongzhimen Hospital, Beijing University of Chinese Medicine (No. DZMKJCX-2022-008)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Xd., Yang, D., Cui, Xy. et al. Mechanism of Qili Qiangxin Capsule for Heart Failure Based on miR133a-Endoplasmic Reticulum Stress. Chin. J. Integr. Med. 30, 398–407 (2024). https://doi.org/10.1007/s11655-024-3654-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-024-3654-3

Keywords

Navigation