Skip to main content

Advertisement

Log in

Botanical Therapeutics for Parkinson’s Disease

  • Feature Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Parkinson’s disease (PD) was first formally described by James Parkinson in 1817, but the shaking of limbs was described in the literature of several ancient civilizations, such as ancient Chinese civilization and ancient Indian civilization. Historically, botanical drugs were used as the main source for the treatment of such kind of disorders. In Western countries, plant extracts also occupied an important place in the earlier medications of PD. With the adventure of synthetic drugs, the role of plant-derived drugs in management of PD has been diminished. Nowadays, there is still no cure for PD, dopaminergic (DA) medication is the treatment of choice, which is just designed to ameliorate symptoms of PD, and long-term use of DA medication will result in reduced efficacy and severe adverse reactions. It is necessary to explore new methods for the treatment of PD. Chinese medicine (CM) developed a holistic and unique theoretical system, and botanical drugs are widely used in practice for more than two millennia. Modern pharmacological studies have proved that Chinese herbs have potential therapeutic effects on PD, such as enhancing neurotrophic activity, clearing protein aggregates, regulating neuroinflammation, etc. All the advances provide us with hope for developing CM as a mainstream medication for treating PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Raudino F. The Parkinson disease before James Parkinson. Neurol Sci 2012;33:945–948.

    Article  PubMed  Google Scholar 

  2. Parkinson J. An essay on the shaking palsy. London: Whittingham and Rowland for Sherwood, Neely, and Jones;1817.

    Google Scholar 

  3. Donaldson IML. James Parkinson's essay on the shaking palsy. J R Coll Physicians Edinb 2015;45:84–86

    Article  CAS  PubMed  Google Scholar 

  4. Goetz CG. The history of Parkinson's disease: early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med 2011;1:a008862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Fahn S. The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Mov Disord 2015;30:4–18.

    Article  CAS  PubMed  Google Scholar 

  6. Wei W, Chen HY, Fan W, et al. Chinese medicine for idiopathic Parkinson's disease: a meta analysis of randomized controlled trials. Chin J Integr Med 2017;23:55–61.

    Article  PubMed  Google Scholar 

  7. Li Q, Zhao D, Bezard E. Traditional Chinese medicine for Parkinson's disease: a review of Chinese literature. Behav Pharmacol 2006;17:403–410.

    Article  PubMed  Google Scholar 

  8. Phani S, Loike JD, Przedborski S. Neurodegeneration and inflammation in Parkinson's disease. Parkinsonism Relat Disord 2012;18(S1):S207–S209.

    Article  PubMed  Google Scholar 

  9. Tarakad A, Jankovic J. Diagnosis and management of Parkinson's disease. Semin Neurol 2017;37:118–126.

    Article  PubMed  Google Scholar 

  10. Rajput AH. Factors predictive of the development of levodopainduced dyskinesia and wearing-off in Parkinson's disease. Mov Disord 2014;29:429.

    Article  PubMed  Google Scholar 

  11. Olanow CW, Stern MB, Sethi K. The scientific and clinical basis for the treatment of Parkinson disease. Neurology 2009;72:S1–136.

    Article  PubMed  Google Scholar 

  12. Marras C, Beck JC, Bower JH, et al. Prevalence of Parkinson's disease across North America. NPJ Parkinsons Dis 2018;4:21.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Li G, Ma J, Cui S, et al. Parkinson's disease in China: a forty-year growing track of bedside work. Transl Neurodegener 2019;8:22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Dorsey ER, Constantinescu R, Thompson JP, et al. Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 2007;68:384–386.

    Article  CAS  PubMed  Google Scholar 

  15. Kim HU, Ryu JY, Lee JO, et al. A systems approach to traditional oriental medicine. Nat Biotechnol 2015;33:264–268.

    Article  CAS  PubMed  Google Scholar 

  16. Schmidt BM, Ribnicky DM, Lipsky PE, et al. Revisiting the ancient concept of botanical therapeutics. Nat Chem Biol 2007;3:360–366.

    Article  CAS  PubMed  Google Scholar 

  17. Cunningham RW, Harned BK, Clark MC, et al. The pharmacology of 3-(N-piperidyl)-1-phenyl-1-cyclohexyl-1-propanol hydrochloric acid (artane) and related compounds; new antispasmodic agents. J Pharmacol Exp Ther 1949;96:151–165.

    CAS  PubMed  Google Scholar 

  18. Lees AJ. Drugs for Parkinson's disease. J Neurol Neurosurg Psychiatry 2002;73:607–610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goetz CG. The history of Parkinson's disease: early clinical descriptions and neurological therapies. Cold Spring Harb Perspect Med 2011;1:a008862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Walusinski O. Jean-Martin Charcot and Parkinson's disease: teaching and teaching materials. Rev Neurol (Paris) 2018;174:491–505.

    Article  CAS  Google Scholar 

  21. Schwab RS, Tillmann WR. Artane in the treatment of Parkinson's disease; a report of its effectiveness alone and in combination with benadryl and parpanit. N Engl J Med 1949;241:483–485.

    Article  CAS  PubMed  Google Scholar 

  22. Porteous HB, Ross DN. Mental symptoms in parkinsonism following benzhexol hydrochloride therapy. Br Med J 1956;2:138–140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ernst AM. Relation between action of dopamine and apomorphine and the O-methylated derivates upon the CNS. Psychopharmacol (Berl) 1965;7:391–399.

    Article  CAS  Google Scholar 

  24. Lees A, Turner K. Apomorphine for Parkinson's disease. Pract Neurol 2002;2:280–286.

    Article  Google Scholar 

  25. Parkes JD, Marsden CD, Donaldson I, et al. Bromocriptine treatment in Parkinson's disease. J Neurol Neurosurg Psychiatry 1976;39:184–193.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Antonini A, Poewe W. Fibrotic heart-valve reactions to dopamine-agonist treatment in Parkinson's disease. Lancet Neurol 2007;6:826–829.

    Article  CAS  PubMed  Google Scholar 

  27. Tan LC, Ng KK, Au WL, et al. Bromocriptine use and the risk of valvular heart disease. Mov Disord 2009;24:344–349.

    Article  PubMed  Google Scholar 

  28. Carbone F, Djamshidian A, Seppi K, et al. Apomorphine for Parkinson's disease: efficacy and safety of current and new formulations. CNS Drugs 2019;33:905–918.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Srivastav S, Fatima M, Mondal AC. Important medicinal herbs in Parkinson's disease pharmacotherapy. Biomed Pharmacother 2017;92:856–863.

    Article  CAS  PubMed  Google Scholar 

  30. Hornykiewicz O. A brief history of levodopa. J Neurol 2010;257(Suppl 2):S249–S252.

    Article  PubMed  CAS  Google Scholar 

  31. Damodaran M, Ramaswamy R. Isolation of L-DOPA from the seeds of Mucuna pruriens. Biochemistry 1937;31:2149–2151.

    CAS  Google Scholar 

  32. Manyam BV. Paralysis agitans and levodopa in “Ayurveda”: ancient Indian medical treatise. Mov Disord 1990;5:47–48.

    Article  CAS  PubMed  Google Scholar 

  33. Katzenschlager R, Evans A, Manson A, et al. Mucuna pruriens in Parkinson's disease: a double blind clinical and pharmacological study. J Neurol Neurosurg Psychiatry 2004;75:1672–1677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cilia R, Laguna J, Cassani E, et al. Mucuna pruriens in Parkinson disease: a double-blind, randomized, controlled, crossover study. Neurology 2017;89:432–438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schmidt B, Ribnicky DM, Poulev A, et al. A natural history of botanical therapeutics. Metabolism 2008;57(7 Suppl 1):S3–S9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Liang SC, Ge GB, Xia YL, et al. Inhibition of human catechol-Omethyltransferase-mediated dopamine O-methylation by daphnetin and its phase II metabolites. Xenobiotica 2017;47:498–504.

    Article  CAS  PubMed  Google Scholar 

  37. Engelbrecht I, Petzer JP, Petzer A. Evaluation of selected natural compounds as dual inhibitors of catechol-O-methyltransferase and monoamine oxidase. Cent Nerv Syst Agents Med Chem 2019;19:133–145.

    Article  CAS  PubMed  Google Scholar 

  38. Parasuraman S, Thing GS, Dhanaraj SA. Polyherbal formulation: concept of Ayurveda. Pharmacogn Rev 2014;8:73–80.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Song JX, Sze SCW, Ng TB, et al. Anti-Parkinsonian drug discovery from herbal medicines: what have we got from neurotoxic models? J Ethnopharmacol 2012;139:698–711.

    Article  CAS  PubMed  Google Scholar 

  40. Nagashayana N, Sankarankutty P, Nampoothiri MR, et al. Association of L-DOPA with recovery following Ayurveda medication in Parkinson's disease. J Neurol Sci 2000;176:124–127.

    Article  CAS  PubMed  Google Scholar 

  41. Ahmad M, Saleem S, Ahmad AS, et al. Neuroprotective effects of Withania somnifera on 6-hydroxydopamine induced Parkinsonism in rats. Hum Exp Toxicol 2005;24:137–147.

    Article  PubMed  Google Scholar 

  42. Sankar SR, Manivasagam T, Krishnamurti A, et al. The neuroprotective effect of Withania somnifera root extract in MPTP-intoxicated mice: an analysis of behavioral and biochemical variables. Cell Mol Biol Lett 2007;12:473–481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Khurana N, Gajbhiye A. Ameliorative effect of Sida cordifolia in rotenone induced oxidative stress model of Parkinson's disease. Neurotoxicol 2013;39:57–64.

    Article  CAS  Google Scholar 

  44. Han L, Xie YH, Wu R, et al. Traditional Chinese medicine for modern treatment of Parkinson's disease. Chin J Integr Med 2017;23:635–640.

    Article  PubMed  Google Scholar 

  45. Zheng GQ. Therapeutic history of Parkinson's disease in Chinese medical treatises. J Altern Complement Med 2009;15:1223–1230.

    Article  PubMed  Google Scholar 

  46. Ren ZL, Zuo PP. Neural regeneration: role of traditional Chinese medicine in neurological diseases treatment. J Pharmacol Sci 2012;120:139–145.

    Article  CAS  PubMed  Google Scholar 

  47. Tian YY, Tang CJ, Wu J, et al. Parkinson's disease in China. Neurol Sci 2011;32:23–30.

    Article  PubMed  Google Scholar 

  48. Zhang ZX, Dong ZH, Román GC. Early descriptions of Parkinson disease in ancient China. Arch Neurol 2006;63:782–784.

    Article  PubMed  Google Scholar 

  49. Raudino F. The Parkinson disease before James Parkinson. Neurol Sci 2012;33:945–948.

    Article  PubMed  Google Scholar 

  50. Chen H, Zhang Z, He J, et al. Traditional Chinese medicine symptom pattern analysis for Parkinson's disease. J Tradit Chin Med 2017;37:688–694.

    Article  PubMed  Google Scholar 

  51. Zheng GQ. Therapeutic history of Parkinson's disease in Chinese medical treatises. J Altern Complement Med 2009;15:1223–1230.

    Article  PubMed  Google Scholar 

  52. Zhang QJ, Zhang YY, Huang WY. Traditional Chinese medicine in treatment of Parkinson's disease. J Integr Med (Chin) 2004;2:75–77.

    Article  Google Scholar 

  53. Liu H, Xie YM, Yi DH, et al. Analysis on clinical characteristics of Parkinsonism inpatients based on hospital information system. J Tradit Chin Med (Chin) 2014;55:1966–1968.

    Google Scholar 

  54. Sheng HM, He JC, Wang WW, et al. The literature research of syndromes of TCM about Parkinson's disease. Lishizhen Med Mater Med Res (Chin) 2011;22:967–969.

    Google Scholar 

  55. Li J, Jin M, Wang L, et al. MDS clinical diagnostic criteria for Parkinson's disease in China. J Neurol 2017;264:476–481.

    Article  CAS  PubMed  Google Scholar 

  56. Postuma RB, Berg D, Stern M, et al. MDS clinical diagnostic criteria for Parkinson's disease. Mov Disord 2015;30:1591–1601.

    Article  PubMed  Google Scholar 

  57. Zhang RC, Huang SJ, Wang YY. Deficient qi retention and pathogenesis of Parkinson's disease. J Beijing Univ Tradit Chin Med (Chin) 2013;36:805–807.

    Google Scholar 

  58. Pan XW, Zhang XG, Chen XC, et al. A survey of application of complementary and alternative medicine in Chinese patients with Parkinson's disease: a pilot study. Chin J Integr Med 2020;26:168–173.

    Article  PubMed  Google Scholar 

  59. Zuo P. Clinical study on Tianma Gouteng Granules combined with selegiline in treatment of Parkinson's disease. Drugs Clinic (Chin) 2018;33:1902–1906.

    Google Scholar 

  60. Chua KK, Chau SC, Li M. Experimental and clinical research literature review of Tianma Gouteng Yin on the treatment of Parkinson's disease. Hong Kong J Tradit Chin Med (Chin) 2012;7:66–70.

    Google Scholar 

  61. Liu LF, Song JX, Lu JH, et al. Tianma Gouteng Yin, a traditional Chinese medicine decoction, exerts neuroprotective effects in animal and cellular models of Parkinson's disease. Sci Rep 2015;5:16862.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Kum WF, Durairajan SS, Bian ZX, et al. Treatment of idiopathic Parkinson's disease with traditional chinese herbal medicine: a randomized placebo-controlled pilot clinical study. Evid Based Complement Alternat Med 2011;2011:724353.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Li WW, Cai DF, Chen XQ. Effects of Yanggan Xifeng Recipe on the neurobehavior of Parkinson's disease rats models. Chin J Integr Tradit West Med (Chin) 2000;20:920–922.

    CAS  Google Scholar 

  64. Bao XX, Ma HH, Ding H, et al. Preliminary optimization of a Chinese herbal medicine formula based on the neuroprotective effects in a rat model of rotenone-induced Parkinson's disease. J Integr Med 2018;16:290–296.

    Article  PubMed  Google Scholar 

  65. Zhu M, Lu C, Li W. Transient exposure to echinacoside is sufficient to activate Trk signaling and protect neuronal cells from rotenone. J Neurochem 2013;124:571–580.

    Article  CAS  PubMed  Google Scholar 

  66. Connor B, Dragunow M. The role of neuronal growth factors in neurodegenerative disorders of the human brain. Brain Res Rev 1998;27:1–39.

    Article  CAS  PubMed  Google Scholar 

  67. Sautter J, Meyer M, Spenger C, et al. Effects of combined BDNF and GDNF treatment on cultured dopaminergic midbrain neurons. Neuroreport 1998;9:1093–1096.

    Article  CAS  PubMed  Google Scholar 

  68. Saragovi HU, Gehring K. Development of pharmacological agents for targeting neurotrophins and their receptors. Trends Pharmacol Sci 2000;21:93–98.

    Article  CAS  PubMed  Google Scholar 

  69. Hosseini R, Moosavi F, Rajaian H, et al. Discovery of neurotrophic agents based on hydroxycinnamic acid scaffold. Chem Biol Drug Des 2016;88:926–937.

    Article  CAS  PubMed  Google Scholar 

  70. Zhu M, Lu C, Li W. Transient exposure to echinacoside is sufficient to activate Trk signaling and protect neuronal cells from rotenone. J Neurochem 2013;124:571–580.

    Article  CAS  PubMed  Google Scholar 

  71. Xu G, Xiong Z, Yong Y, et al. Catalpol attenuates MPTP induced neuronal degeneration of nigral-striatal dopaminergic pathway in mice through elevating glial cell derived neurotrophic factor in striatum. Neuroscience 2010;167:174–184.

    Article  CAS  PubMed  Google Scholar 

  72. Ryu S, Jeon H, Koo S, et al. Korean red ginseng enhances neurogenesis in the subventricular zone of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-treated mice. Front Aging Neurosci 2018;10:355.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010;221:3–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hou X, Watzlawik JO, Fiesel FC, et al. Autophagy in Parkinson's disease. J Mol Biol 2020. doi: 10.1016/j.jmb.2020.01.037. [Epub ahead of print]

    Google Scholar 

  75. Chen LL, Song JX, Lu JH, et al. Corynoxine, a natural autophagy enhancer, promotes the clearance of alpha-synuclein via Akt/mTOR pathway. J Neuroimmune Pharmacol 2014;9:380–387.

    Article  PubMed  Google Scholar 

  76. Hu G, Gong X, Wang L, et al. Triptolide promotes the clearance of α-synuclein by enhancing autophagy in neuronal cells. Mol Neurobiol 2017;54:2361–2372.

    Article  CAS  PubMed  Google Scholar 

  77. Law BYK, Wu AG, Wang MJ, et al. Chinese medicine: a hope for neurodegenerative diseases? J Alzheimers Dis 2017;60(s1):S151–S160.

    Article  PubMed  Google Scholar 

  78. Sanchez-Guajardo V, Barnum CJ, Tansey MG, et al. Neuroimmunological processes in Parkinson's disease and their relation to a-synuclein: microglia as the referee between neuronal processes and peripheral immunity. ASN Neuro 2013;5:113–139.

    Article  CAS  PubMed  Google Scholar 

  79. Kim YS, Joh TH. Microglia, major player in the brain inflammation: their roles in the pathogenesis of Parkinson's disease. Exp Mol Med 2006;38:333–347.

    Article  CAS  PubMed  Google Scholar 

  80. Zhou Y, Lu M, Du RH, et al. MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease. Mol Neurodegener 2016;11:28.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Gao JP, Sun S, Li WW, et al. Triptolide protects against 1-methyl-4-phenyl pyridinium-induced dopaminergic neurotoxicity in rats: implication for immunosuppressive therapy in Parkinson's disease. Neurosci Bull 2008;24:133–142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Faust K, Gehrke S, Yang Y, et al. Neuroprotective effects of compounds with antioxidant and anti-inflammatory properties in a Drosophila model of Parkinson's disease. BMC Neurosci 2009;10:109.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Zhang X, Yang Y, Du L, et al. Baicalein exerts anti-neuroinflammatory effects to protect against rotenone-induced brain injury in rats. Int Immunopharmacol 2017;50:38–47.

    Article  CAS  PubMed  Google Scholar 

  84. Hung KC, Huang HJ, Wang YT, et al. Baicalein attenuates a-synuclein aggregation, inflammasome activation and autophagy in the MPP+-treated nigrostriatal dopaminergic system in vivo. J Ethnopharmacol 2016;194:522–529.

    Article  CAS  PubMed  Google Scholar 

  85. Liu SM, Li XZ, Zhang SN, et al. Acanthopanax senticosus protects structure and function of mesencephalic mitochondria in a mouse model of Parkinson's disease. Chin J Integr Med 2018;24:835–843.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-wei Li.

Additional information

Supported by the National Natural Science Foundation of China (No. 81973642) and the Foundation of Shanghai Public Health Clinical Center (No. RCJJ2019-02)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Ww. Botanical Therapeutics for Parkinson’s Disease. Chin. J. Integr. Med. 26, 405–411 (2020). https://doi.org/10.1007/s11655-020-3096-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-020-3096-5

Keywords

Navigation