Skip to main content

Advertisement

Log in

Angiogenesis and Hepatic Fibrosis: Western and Chinese Medicine Therapies on the Road

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Hepatic fibrosis is a common feature of almost all chronic liver diseases. Formation of new vessels (angiogenesis) is a process strictly related to the progressive fibrogenesis which leads to cirrhosis and liver cancer. This review mainly concerns the relationship between angiogenesis and hepatic fibrosis, by considering the mechanism of angiogenesis, cells in angiogenesis, anti-angiogenic and Chinese medicine therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sakat K, Ed S, Lee E, et al. Neovessel formation promotes liver fibrosis via providing latent transforming growth factor–β. Biochem Biophys Res Commun 2014;443:950–956.

    Article  CAS  Google Scholar 

  2. Schuppan D, Kim YO. Evolving therapies for liver fibrosis. J Clin Invest 2013;123:1887–1901.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Coulon S, Heindryckx F, Geerts A, et al. Angiogenesis in chronic liver disease and its complications. Liver Int 2011;1478–3223.

    Google Scholar 

  4. Fernández M, Semela D, Bruix J, et al. Angiogenesis in liver disease. J Hepatol 2009;50:604–620.

    Article  PubMed  CAS  Google Scholar 

  5. Pereira ER, Liao N, Neale GA, et al. Transcriptional and posttranscriptional regulation of proangiogenic factors by the unfolded protein response. PLoS One 2010;5:e12521.

    Article  CAS  Google Scholar 

  6. Valfrè di Bonzo L, Novo E, Cannito S, et al. Angiogenesis and liver fibrogenesis. Histol Histopathol 2009;24:1323–1341.

    PubMed  Google Scholar 

  7. Raskopf E, Carmona MAG, van Cayzeele CJ, et al. Toxic damage increases angiogenesis and metastasis in fibrotic livers via PECAM–1. Biomed Res Int 2014;2014:712893.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Hsu SJ, Wang SS, Hsin IF, et al. Green tea polyphenol decreases the severity of portosystemic collaterals and mesenteric angiogenesis in rats with liver cirrhosis. Clin Sci (Lond) 2014;126:633–644.

    Article  CAS  Google Scholar 

  9. Carmeliet P. Angiogenesis in health and disease. Nat Med 2003;9:653–660.

    Article  PubMed  CAS  Google Scholar 

  10. Carmeliet P. Angiogenesis in life, disease and medicine. Nature 2005;438:932–936.

    Article  PubMed  CAS  Google Scholar 

  11. Yang L, Kwon J, Popov Y, et al. Vascular endothelial growth factor promotes fibrosis resolution and repair in mice, Gastroenterology 2014;146:1339–1350.

    Article  PubMed  CAS  Google Scholar 

  12. Senger DR, Galli SJ, Dvorak AM, et al. Tumor cells secrete a vascular permeability factor that promotes accumulation of ascites fluid. Science 1983;219:983–985.

    Article  PubMed  CAS  Google Scholar 

  13. Lee CG, Link H, Baluk P, et al. Vascular endothelial growth factor (VEGF) induces remodeling and enhances TH2–mediated sensitization and inflammation in the lung. Nature Med 2004;10:1095–1093.

    Article  PubMed  CAS  Google Scholar 

  14. Sahin H, Borkham–Kamphorst E, Kuppe C, et al. Chemokine Cxcl9 attenuates liver fibrosis associated angiogenesis in mice. Hepatology 2012;55:1610–1619.

    Article  PubMed  CAS  Google Scholar 

  15. Yoshiji H, Kuriyama S, Yoshii J, et al. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut 2003;52:1347–1354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Kajdaniuk D, Marek B, Borgiel–Marek H, et al. Vascular endothelial growth factor (VEGF)–part 1: in physiology and pathophysiology. Endokrynol Pol 2011;62:444–455.

    PubMed  CAS  Google Scholar 

  17. Salcedo X, Medina J, Sanz–Cameno P, et al. Review article: angiogenesis soluble factors as liver disease markers. Aliment Pharmacol Ther 2005;22:23–30.

    Article  PubMed  CAS  Google Scholar 

  18. Ogawa S, Oku A, Sawano A, et al. A novel type of vascular endothelial growth factor, VEGF–E (NZ–7 VEGF), preferentialy utilizes KDR/Flk–1 receptor and carries a potent mitotic activity without heparin–binding domain. J Biol Chem 1998;273:31273–31282.

    Article  PubMed  CAS  Google Scholar 

  19. Ferrara N. Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am J Physiol 2001;280:C1358–C1366.

    Article  CAS  Google Scholar 

  20. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med 2000;6:389–395.

    Article  PubMed  CAS  Google Scholar 

  21. Fernandez M, Mejias M, Garcia–Pras E, et al. Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet–derived growth factor blockade in rats. Hepatology 2007;46:1208–1217.

    Article  PubMed  CAS  Google Scholar 

  22. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 2003;9:669–676.

    Article  PubMed  CAS  Google Scholar 

  23. Lin HC, Huang YT, Yang YY, et al. Beneficial effects of dual VEGFR/FGFR inhibitor brivanib alaninate in cirrhotic portal hypertensive rats. J Gastroenterol Hepatol 2014;29:1073–1082.

    Article  PubMed  CAS  Google Scholar 

  24. Kaur S, Tripathi D, Dongre K, et al. Increased number and function of endothelial progenitor cells stimulate angiogenesis by resident liver sinusoidal endothelial cells (SECs) in cirrhosis through paracrine factors. J Hepatol 2012;57:1193–1198.

    Article  PubMed  CAS  Google Scholar 

  25. Bueno M, Salgado S, Beas–arate C, et al. Urokinase–type plasminogen activator gene therapy in liver cirrhosis is mediated by collagens gene expression down–regulation and up–regulation of MMPs, HGF and VEGF. J Gene Med 2006;8:1291–1299.

    Article  PubMed  CAS  Google Scholar 

  26. Franchitto A, Onori P, Renzi A, et al. Expression of vascular endothelial growth factors and their receptors by hepatic progenitor cells in human liver diseases. Hepatobi Surg Nutr 2013;2:68–77.

    Google Scholar 

  27. Novo E, Cannito S, Zamara E, et al. Proangiogenic cytokines as hypoxia–dependent factors stimulating migration of human hepatic stellate cells. Am J Pathol 2007;170:1942–1953.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Andrae J, Gallini R, Betsholtz C. Role of platelet–derived growth factors in physiology and medicine. Genes Dev 2008;22:1276–1312.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Heldin CH, Ostman A, Ronnstrand L. Signal transduction via platelet derived growth factor receptors. Biochim Biophys Acta 1998;1378:F79–F113.

    PubMed  CAS  Google Scholar 

  30. Bergsten E, Uutela M, Li X, et al. PDGF–D is a specific, proteaseactivated ligand for the PDGF beta–receptor. Nat Cell Biol 2001;3:512–516.

    Article  PubMed  CAS  Google Scholar 

  31. Donovan J, Abraham DA, Norman J. Platelet–derived growth factor signalling in mesenchymal cells. Front Biosci (Landmark Ed). 2013;18:106–119.

    Article  PubMed  CAS  Google Scholar 

  32. Donovan J, Xu SW, Norman J, et al. Platelet–derived growth factor alpha and beta receptors have overlapping functional activities towards fibroblasts. Fibrogenesis Tissue Repair 2013;6:9–10.

    Article  CAS  Google Scholar 

  33. Fang L, Zhan SX, Huang C, et al. TRPM7 channel regulates PDGFBB–induced proliferation of hepatic stellate cells via PI3K and ERK pathways. Toxicol Appl Pharmacol 2013;272:713–725.

    Article  PubMed  CAS  Google Scholar 

  34. Armulik A, Abramsson A, Betsholtz C. Endothelial/pericyteinteractions. Circ Res 2005;97:512–523.

    Article  PubMed  CAS  Google Scholar 

  35. Semela D, Das A, Langer D, et al. Platelet–derived growth factor signaling through Ephrin–B2 regulates hepatic vascular structure and function. Gastroenterology 2008;135:671–679.

    Article  PubMed  CAS  Google Scholar 

  36. McKeehan WL, Wang F, Kan M. The heparan sulfate–fibroblast growth factor family: diversity of structure and function. Prog Nucleic Acid Res Mol Biol 1998;59:135–176.

    Article  PubMed  CAS  Google Scholar 

  37. Cheng AL, Shen YC, Zhu AX. Targeting fibroblast growth factor receptor signaling in hepatocellular carcinoma. Oncology 2011;81:372–380.

    Article  PubMed  CAS  Google Scholar 

  38. Lin HC, Huang YT, Yang YY, et al. Beneficial effects of dual vascular endothelial growth factor receptor/fibroblast growth factor receptor inhibitor brivanib alaninate in cirrhotic portal hypertensive rats. J Gastroenterol Hepatol 2014;29;1073–1082.

    Article  PubMed  CAS  Google Scholar 

  39. Nakamura I, Zakharia K, Banini BA, et al. Brivanib attenuates hepatic fibrosis in vivo and stellate cell activation in vitro by inhibition of FGF, VEGF and PDGF signaling. PLoS One 2015;10:e 0142355.

    Article  CAS  Google Scholar 

  40. Klein S, Roghani M, Rifkin DB. Fibroblast growth factors as angiogenesis factors: new insights into their mechanism of action. EXS 1997;79:159–192.

    PubMed  CAS  Google Scholar 

  41. Sleeman M, Fraser J, McDonald M, et al. Identification of a new fibroblast growth factor receptor, FGFR5. Gene 2001;271:171–182.

    Article  PubMed  CAS  Google Scholar 

  42. Semenza GL. Hypoxia–inducible factors in physiology and medicine. Cell 2012;148:399–408.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Qu A, Taylor M, Xue X, et al. Hypoxia–inducible transcription factor 2α promotes steatohepatitis through augmenting lipid accumulation, inflammation, and fibrosis. Hepatology 2011;54:472–483.

    Article  PubMed  CAS  Google Scholar 

  44. Cannito S, Paternostro C, Busletta C, et al. Hypoxia, hypoxiainducible factors and fibrogenesis in chronic liver diseases. Histol Histopathol 2014 Jan;29:33–44.

    Google Scholar 

  45. Fraisl P, Mazzone M, Schmidt T, et al. Regulation of angiogenesis by oxygen and metabolism. Dev Cell 2009;16:167–179.

    Article  PubMed  CAS  Google Scholar 

  46. Copple BL, Bai S, Burgoon LD, et al. Hypoxia–inducible factor–1 gulates the expression of genes in hypoxic hepatic stellate cells are important for collagen deposition and angiogenesis. Liver Int 2011;31:230–244.

    Article  PubMed  CAS  Google Scholar 

  47. Ueda N, Chihara D, Kohno A, et al. Predictive value of circulating angiopoietin–2 for endothelial damage related complications in allogeneic hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 2014;20;1335–1340.

    Article  PubMed  CAS  Google Scholar 

  48. Cascone T, Heymach JV. Targeting the angiopoietin/Tie2 pathway: cutting tumor vessels with a double–edged sword? J Clin Oncol 2012;30:441–444.

    Article  PubMed  CAS  Google Scholar 

  49. Scholz A, Lang V, Henschler R, et al. Angiopoietin–2 promotes myeloid cell infiltration in a beta(2)–integrin–dependent manner. Blood 2011;118:5050–5059.

    Article  PubMed  CAS  Google Scholar 

  50. Hernández–Bartolomé A, Lopez–Rodríguez R, Rodríguez–Muñ oz Y, et al. Angiopoietin–2 serum levels Improve noninvasive fibrosis staging in chronic hepatitis C: a fibrogenic–angiogenic link. PLoS One 2013;8:e66143.

    Article  CAS  Google Scholar 

  51. Tacke F, Weiskirchen R. Update on hepatic stellate cells: pathogenic role in liver fibrosis and novel isolation techniques. Expert Rev Gastroenterol Hepatol 2012;6:67–80.

    Article  PubMed  CAS  Google Scholar 

  52. Zhang F, Kong D, Chen L, et al. Peroxisome proliferatoractivated receptor–cinterrupts angiogenic signal transduction by transrepression of platelet–derived growth factor–breceptor in hepatic stellate cells. J Cell Sci 2014;127:305–314.

    Article  PubMed  CAS  Google Scholar 

  53. Hellberg C, Ostman A, Heldin CH. PDGF and vessel maturation. Rec Res Cancer Res 2010;180:103–114.

    Article  CAS  Google Scholar 

  54. Medina J, Arroyo AG, Sanchez–Madrid F, et al. Angiogenesis in chronic inflammatory liver disease. Hepatology 2004;39:1185–1195.

    Article  PubMed  CAS  Google Scholar 

  55. Majumder S, Piguet AC, Dufour JF, et al. Study of the cellular mechanism of Sunitinib mediated inactivation of activated hepatic stellate cells and its implications in angiogenesis. Eur J Pharmacol 2013;705:86–95.

    Article  PubMed  CAS  Google Scholar 

  56. Taura K, De Minicis S, Seki E, et al. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology 2008;135:1729–1738.

    Article  PubMed  CAS  Google Scholar 

  57. Witek RP, Yang L, Liu RS, et al. Liver cell–derived microparticles activate hedgehog signaling and alter gene expression in hepatic endothelial cells. Gastroenterology 2009;136:320–330.

    Article  PubMed  CAS  Google Scholar 

  58. Kaur S, Tripathi D, Dongre K, et al. Increased number and function of endothelial progenitor cells stimulate angiogenesis by resident liver sinusoidal endothelial cells (SECs) in cirrhosis through paracrine factors. J Hepatol 2012;57:1193–1198.

    Article  PubMed  CAS  Google Scholar 

  59. Yang L, Yue S, Yang L, et al. Sphingosine kinase/sphingosine 1–phosphate (S1P)/S1P receptor axis is involved in liver fibrosisassociated angiogenesis. J Hepatol 2013;59:114–123.

    Article  PubMed  CAS  Google Scholar 

  60. Corpechot C, Barbu V, Wendum D, et al. Hypoxia–induced VEGF and collagen expressions are associated with angiogenesis and fibrogenesis in experimental cirrhosis. Hepatology 2002;35:1010–1021.

    Article  PubMed  CAS  Google Scholar 

  61. Lee JS, Semela D, Iredale J, et al. Sinusoidal remodeling and angiogenesis:a new function for the liver–specific pericyte? Hepatology 2007;45:817–825.

    Article  PubMed  CAS  Google Scholar 

  62. Paternostro C, David E, Novo E, et al. Hypoxia, angiogenesis and liver fibrogenesis in the progression of chronic liver diseases. World J Gastroenterol 2010;16:281–288.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Novo E, Cannito S, Zamara E, et al. Proangiogenic cytokines as hypoxia dependent factors stimulating migration of human hepatic stellate cells. Am J Pathol 2007;170:1942–1953.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Aleffi S, Petrai I, Bertolani C, et al. Upregulation of proinflammatory and proangiogenic cytokines by leptin in human hepatic stellate cells. Hepatology 2005;42:1339–1348.

    Article  PubMed  CAS  Google Scholar 

  65. Winwood PJ, Arthur MJ. Kupffer cells: their activation and role in animal models of liver injury and human liver disease. Semin Liver Dis 1993;13:50–59.

    Article  PubMed  CAS  Google Scholar 

  66. Su LJ, Chang CC, Yang CH, et al. Graptopetalum paraguayense ameliorates chemical–Induced rat hepatic fibrosis in vivo and inactivates stellate cells and kupffer cells in vitro. PLoS One 2013;8:e53988.

    Article  CAS  Google Scholar 

  67. Boltjes A, Movita D, Boonstra A, et al. The role of Kupffer cells in hepatitis B and hepatitis C virus infections. J Hepatol 2014;61:660–671.

    Article  PubMed  CAS  Google Scholar 

  68. Horie Y, Wolf R, Russell J, et al. Role of Kupffer cells in gut ischemia/reperfusion–induced hepatic microvascular dysfunction in mice. Hepatology 1997;26:1499–505.

    Article  PubMed  CAS  Google Scholar 

  69. Zhou WC, Zhang QB, Qiao L. Pathogenesis of liver cirrhosis. World J Gastroenterol 2014;20:7312–7324.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Liaskou E, Wilson DV, Oo YH. Innate immune cells in liver inflammation. Mediat Inflamm 2012;2012:949157.

    Article  CAS  Google Scholar 

  71. Marra F, Tacke F. Reviews in basic and clinical gastroenterology and hepatology. Gastroenterology 2014;147:577–594.

    Article  PubMed  CAS  Google Scholar 

  72. Franceschini B, Ceva–Grimaldi G, Russo C, et al. The complex functions of mast cells in chronic human liver diseases. Dig Dis Sci 2006;51:2248–2256.

    Article  PubMed  Google Scholar 

  73. Franceschini B, Russo C, Dioguardi N, et al. Increased liver mast cell recruitment in patients with chronic C virus–related hepatitis and histologically documented steatosis. J Viral Hepatiti 2007;14:549–555.

    Article  CAS  Google Scholar 

  74. Shen DZ. A target role for mast cell in the prevention and therapy of hepatic fibrosis. Med Hypothes 2008;70:760–764.

    Article  CAS  Google Scholar 

  75. Makhlouf HR, Ishak KG. Sclerosed hemangioma and sclerosing cavernous hemangioma of the liver: a comparative clinicopathologic and immunohistochemical study with emphasis on the role of mast cells in their histogenesis. Liver 2002;22:7–78.

    Article  Google Scholar 

  76. Cogger VC, Mitchell SJ, Warren A, et al. Age–related loss of responsiveness to 2,5–dimethoxy–4–Iodoamphetamine in liver sinusoidal endothelial cells. J Gerontol A Biol Sci Med Sci 2014;69:514–518.

    Article  PubMed  CAS  Google Scholar 

  77. DeLeve LD. Liver sinusoidal endothelial cells in hepatic fibrosis. Hepatology 2015;61:1740–1746.

    Article  PubMed  CAS  Google Scholar 

  78. Xie G, Wang X, Wang L, et al. Role of differentiation of liver sinusoidal endothelial cells in progression and regression of hepatic fibrosis in rats. Gastroenterology 2012;142:918–927.

    Article  PubMed  Google Scholar 

  79. Hu JH, Srivastava K, Wieland M, et al. Endothelial cell–derived angiopoietin–2 controls liver regeneration as a spatiotemporal rheostat. Science 2014;343:416–419.

    Article  PubMed  CAS  Google Scholar 

  80. Su TH, KaoI JH, Liu CJ. Molecular mechanism and treatment of viral hepatitis–related liver fibrosis. Int J Mol Sci 2014;15:10578–10604.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zhang ZL, Zhang F, Luan Y, et al. The update on implications and mechanisms of angiogenesis in liver fibrosis. Hepatol Res 2015;45:162–178.

    Article  PubMed  Google Scholar 

  82. Taura K, De Minicis S, Seki E, et al. Hepatic stellate cells secrete angiopoietin 1 that induces angiogenesis in liver fibrosis. Gastroenterology 2008;135:1729–1738.

    Article  PubMed  CAS  Google Scholar 

  83. Tugues S, Fernandez–Varo G, Munoz–Luque J, et al. Antiangiogenic treatment with sunitinib ameliorates inflammatory infiltrate, fibrosis, and portal pressure in cirrhotic rats. Hepatology 2007;46:1919–1926.

    Article  PubMed  CAS  Google Scholar 

  84. Thabut D, Shah V. Intrahepatic angiogenesis and sinusoidal remodeling in chronic liver disease: new targets for the treatment of portal hypertension? J Hepatology 2010:53:976–980.

    Google Scholar 

  85. Thabut D, Routray C, Lomberk G, et al. Complementary vascular and matrix regulatory pathways underlie the beneficial mechanism of action of sorafenibin liver fibrosis. Hepatology 2011;54:573–585.

    Article  PubMed  CAS  Google Scholar 

  86. Yao Q, Lin Y, Li X, et al. Curcumin ameliorates intrahepatic angiogenesis and capillarization of the sinusoids in carbon tetrachlorideinduced rat liver fibrosis. Toxicol Lett 2013;222:72–82.

    Article  PubMed  CAS  Google Scholar 

  87. Zhang F, Zhang Z, Chen L, et al. Curcumin attenuates angiogenesis in liver fibrosis and inhibits angiogenic properties of hepatic stellate cells. J Cell Mol Med 2014;18:1392–1406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Copple BL, Bai S, Burgoon LD, et al. Hypoxia–inducible factor–1α regulates expression of genes in hypoxic hepatic stellate cells important for collagen deposition and angiogenesis. Liver Int 2011;31:230–244.

    Article  PubMed  CAS  Google Scholar 

  89. Huang Y, Feng H, Kan T, et al. Bevacizumab attenuates hepatic fibrosis in rats by inhibiting activation of hepatic stellate cells. PLoS One 2013;8:e73492.

    Article  CAS  Google Scholar 

  90. Yoshiji H, Kuriyama S, Yoshii J, et al. Vascular endothelial growth factor and receptor interaction is a prerequisite for murine hepatic fibrogenesis. Gut 2003;52:1347–1354.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Wang YQ, Ikeda K, Ikebe T, et al. Inhibition of hepatic stellate cell proliferation and activation by the semisynthetic analogue of fumagillin TNP–470 in rats. Hepatology 2000;32:980–989.

    Article  PubMed  CAS  Google Scholar 

  92. Van Belle E, Witzenbichler B, Chen D, et al. Potentiated angiogenic effect of scatter factor/hepatocyte growth factor via induction of vascular endothelial growth factor: the case for paracrine amplification of angiogenesis. Circulation 1998;97:381–390.

    Article  PubMed  Google Scholar 

  93. Engelse MA, Hanemaaijer R, Koolwijk P, et al. The fibrinolytic sistem and matrix metalloproteinases in angiogenesis and tumor progression. Semin Thromb Hemost 2004;30:71–81.

    Article  PubMed  CAS  Google Scholar 

  94. Xin X, Yang S, Ingle G, et al. Hepatocyte growth factor enhances vascular endothelial growth factor–induced angiogenesis in vitro and in vivo. Am J Pathol 2001;158:1111–1120.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Liu YQ, Wang Z, Wang JN, et al. A histone deacetylase inhibitor, largazole, decreases liver fibrosis and angiogenesis by inhibiting transforming growth factor–b and vascular endothelial growth factor signalling. Liver Int 2013;33:504–515.

    Article  PubMed  CAS  Google Scholar 

  96. Fernandez M, Mejias M, Garcia–Pras E, et al. Reversal of portal hypertension and hyperdynamic splanchnic circulation by combined vascular endothelial growth factor and platelet–derived growth factor blockade in rats. Hepatology 2007;46:1208–1217.

    Article  PubMed  CAS  Google Scholar 

  97. Jiao JJ, Friedman SL, Aloman C. Hepatic fibrosis. Curr Opin Gastroenterol 2009;25:223–229.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Neef M, Ledermann M, Saegesser H, et al. Oral imatinib treatment reduces early fibrogenesis but does not prevent progression in the long term. J Hepatol 2006;44:167–175.

    Article  PubMed  CAS  Google Scholar 

  99. Patsenker E, Popov Y, Stickel F, et al. Pharmacological inhibition of integrin α vβ3 aggravates experimental liver fibrosis and suppresses hepatic angiogenesis. Hepatology 2009;50:1501–1511.

    Article  PubMed  CAS  Google Scholar 

  100. Yao QY, Lin YZ, Li X, et al. Curcumin ameliorates intrahepatic angiogenesis and capillarization of the sinusoids in carbon tetrachloride–induced rat liver fibrosis. Toxicol Lett 2013;222:72–82.

    Article  PubMed  CAS  Google Scholar 

  101. HSU SJ, Wang SS, I–Fang HSIN, et al. Green tea polyphenol decreases the severity of portosystemic collaterals and mesenteric angiogenesis in rats with liver cirrhosis. Clin Sci 2014;126:633–644.

    Article  CAS  Google Scholar 

  102. Peng Y, Tao Y, Wang Q, et al. Ergosterol is the active compound of cultured mycelium cordyceps sinensis on antiliver fibrosis. Evid Based Complement Alternat Med 2014;2014:537234.

    PubMed  PubMed Central  Google Scholar 

  103. Liu CH, Hu YY, Xu LM, et al. Effect of Fuzheng Huayu Formula and its actions against liver fibrosis. Chin Med (Chin) 2009;4:12.

    Article  CAS  Google Scholar 

  104. Qu JH, Yu ZJ, Li Q, et al. Blocking and reversing hepatic fibrosis in patients with chronic hepatitis B treated by traditional Chinese medicine (tablets of biejia ruangan or RGT): study protocol for a randomized controlled trial. Trials 2014;15:438.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Zhao XK, Cheng ML, Wu RM, et al. Effect of Danshao Huaxian Capsule on gremlin and bone morphogenetic protein–7 expression in hepatic fibrosis in rats. World J Gastroenterol 2014;20:14875–14883.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Zhou YN, Sun MY, Mu YP, et al. Xuefuzhuyu Decoction inhibition of angiogenesis attenuates liver fibrosis induced by CCl4 in mice. J Ethnopharmacol 2014;153:659–666.

    Article  PubMed  Google Scholar 

  107. Chen JY, Chen HL, Cheng JC, et al. A Chinese herbal medicine, Gexia–Zhuyu Tang (GZT), prevents dimethylnitrosamine–induced liver fibrosis through inhibition of hepatic stellate cells proliferation. J Ethnopharmacol 2012;142:811–818.

    Article  PubMed  Google Scholar 

  108. Liang XL, Yuan JY. Effect of Chinese herbal compound on liver fibrosis in rabbits with schistosomiasis by B–ultrasound. Asian Pacific J Tropical Med 2013;6:658–662.

    Article  Google Scholar 

  109. Shen X, Cheng SS, Peng Y, et al. Attenuation of early liver fibrosis by herbal compound "Diwu Yanggan" through modulating the balance between pithelial–to–mesenchymal transition and mesenchymal–toepithelial transition. BMC Complement Alternat Med 2014;14:418.

    Article  Google Scholar 

  110. Zhou YX, Chen J, Li JP, et al. Chinese medicinal herbs In treating model rats with hepatic fibrosis. Afr J Tradit Complement Altern Med 2009;7:104–108.

    PubMed  PubMed Central  Google Scholar 

  111. Lin HJ, Tseng CP, Lin CF, et al. A Chinese herbal decoction, modified Yi Guan Jian, Induces apoptosis in hepatic stellate cells through an ROS–mediated mitochondrial/Caspase pathway. Evid Based Complement Alternat Med 2011;2011:459531.

    PubMed  Google Scholar 

  112. Xi SY, Yue LF, Shi MM, et al. The effects of Taoren–Honghua herb pair on pathological microvessel and angiogenesis–associated signaling pathway in mice model of CCl4–induced chronic liver disease. Evid Based Compl Alterna Med 2016;2016:2974256.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiu-yun Zhang.

Additional information

Supported by National Natural Science Foundation Project (No. 81573767), Doctoral Innovation Fund from Chin Academy of Chinese Medical Sciences (No. CX201404)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Js., Zhang, Qy., Cheng, Jl. et al. Angiogenesis and Hepatic Fibrosis: Western and Chinese Medicine Therapies on the Road. Chin. J. Integr. Med. 24, 713–720 (2018). https://doi.org/10.1007/s11655-018-3007-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-018-3007-1

Keywords

Navigation