Skip to main content
Log in

Paradox of using intensive lowering of blood glucose in diabetics and strategies to overcome it and decrease cardiovascular risks

  • Academic Exploration
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Hyperglycemia significantly increases the risk of cardiovascular disease (CVD) in diabetics. However, it has been shown by a series of large scale international studies that intensive lowering of blood glucose levels not only has very limited benefits against cardiovascular problems in patients, but may even be harmful to patients at a high risk for CVD and/or poor long-term control of blood glucose levels. Therefore, Western medicine is faced with a paradox. One way to solve this may be administration of Chinese herbal medicines that not only regulate blood glucose, blood fat levels and blood pressure, but also act on multiple targets. These medicines can eliminate cytotoxicity of high glucose through anti-inflfl ammatory and anti-oxidant methods, regulation of cytokines and multiple signaling molecules, and maintenance of cell vitality and the cell cycle, etc. This allows hyperglycemic conditions to exist in a healthy manner, which is called “harmless hyperglycemia” Furthermore, these cardiovascular benefits go beyond lowering blood glucose levels. The mechanisms of action not only avoid cardiovascular injury caused by intensive lowering of blood glucose levels, but also decrease the cardiovascular dangers posed by hyperglycemia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stratton IM, Adler AI, Neil HA, Mattews DR, Manley SE, Cull CA, et al. Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000;321:405–412.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Goff DCJr, Gerstein HC, Ginsberg HN, Cushman WC, Margolis KL, Byington RP, et al. Prevention of cardiovascular disease in persons with type 2 diabetes mellitus: current knowledge and rationale for the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Am J Cardiol 2007;99:4i–20i.

    Article  PubMed  Google Scholar 

  3. Prince CT, Becker DJ, Costacou T, Miller RG, Orchard TJ. Changes in glycaemic control and risk of coronary artery disease in type 1 diabetes mellitus: findings from the Pittsburgh Epidemiology of Diabetes Complications Study (EDC). Diabetologia 2007;50:2280–2288.

    Article  CAS  PubMed  Google Scholar 

  4. Yamagishi S, Nakamura K, Matsui T, Ueda S, Noda Y, Imaizumi T. Inhibitors of advanced glycation end products (AGEs): potential utility for the treatment of cardiovascular disease. Cardiovasc Ther 2008;26:50–58.

    CAS  PubMed  Google Scholar 

  5. Nin JW, Ferreira I, Schalkwijk CG, Prins MH, Chaturvedi N, Fuller JH, et al. Levels of soluble receptor for AGE are cross-sectionally associated with cardiovascular disease in type 1 diabetes, and this association is partially mediated by endothelial and renal dysfunction and by low-grade inflammation: the EURODIAB Prospective Complications Study. Diabetologia 2009;52:705–714.

    Article  CAS  PubMed  Google Scholar 

  6. Cederberg H, Saukkonen T, Laakso M, Jokelainen J, Härkö nen P, Timonen M, et al. Postchallenge glucose, HbA1c, and fasting glucose as predictors of type 2 diabetes and cardiovascular disease: a 10-year prospective cohort study. Diabetes Care 2010;33:2077–2083.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Choi SW, Shin MH, Yun WJ, Kim HY, Lee YH, Kweon SS, et al. Association between hemoglobin A(1c), carotid atherosclerosis, arterial stiffness, and peripheral arterial disease in Korean type 2 diabetic patients. J Diabetes Complications 2011;25:7–13.

    Article  PubMed  Google Scholar 

  8. Alexander CM, Landsman PB, Teutsch SM, Haffner SM, Third National Health and Nutrition Examination Survey (NHANES), National Cholesterol Education Program (NCEP). NCEP-defined metabolic syndrome, diabetes, and prevalence of coronary heart disease among NHANES participants age 50 years and older. Diabetes 2003;52:1210–1214.

    Article  CAS  PubMed  Google Scholar 

  9. Davey Smith G, Bracha Y, Svendsen KH, Neaton JD, Haffner SM, Kuller LH, et al. Incidence of type 2 diabetes in the randomized multiple risk factor intervention trial. Ann Intern Med 2005;142:313–322.

    Article  PubMed  Google Scholar 

  10. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998;352:837–853.

    Article  Google Scholar 

  11. Holman RR, Paul SK, Bethel MA, Matthews DR, Neil HA. 10-year follow-up of intensive glucose control in type 2 diabetes. N Engl J Med 2008;359:1577–1589.

    Article  CAS  PubMed  Google Scholar 

  12. Kingry C, Bastien A, Booth G, Geraci TS, Kirpach BR, Lovato LC, Margolis KL, et al. Recruitment strategies in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Am J Cardiol 2007;99:68i–79i.

    Article  PubMed  Google Scholar 

  13. ACCORD Study Group. Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial: design and methods. Am J Cardiol 2007;99:21i–33i.

    Google Scholar 

  14. Gerstein HC, Riddle MC, Kendall DM, Cohen RM, Goland R, Feinglos MN, et al. Glycemia treatment strategies in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Am J Cardiol 2007;99:34i–43i.

    Article  PubMed  Google Scholar 

  15. Bonds DE, Kurashige EM, Bergenstal R, Brillon D, Domanski M, Felicetta JV, et al. Severe hypoglycemia monitoring and risk management procedures in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Am J Cardiol 2007;99:80i–89i.

    Article  PubMed  Google Scholar 

  16. Riddle MC, Ambrosius WT, Brillon DJ, Buse JB, Byington RP, Cohen RM, et al. Epidemiologic relationships between A1C and all-cause mortality during a median 3. 4-year follow-up of glycemic treatment in the ACCORD trial. Diabetes Care 2010;33:983–990.

    Article  PubMed Central  PubMed  Google Scholar 

  17. ACCORD Study Group. Long-term effects of intensive glucose lowering on cardiovascular outcomes. N Engl J Med 2011;364:818–828.

    Article  Google Scholar 

  18. Pop-Busui R, Evans GW, Gerstein HC, Fonseca V, Fleg JL, Hoogwerf BJ, et al. Effects of cardiac autonomic dysfunction on mortality risk in the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care 2010;33:1578–1584.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Miller ME, Bonds DE, Gerstein HC, Seaquist ER, Bergenstal RM, Calles-Escandon J, et al. The effects of baseline characteristics, glycaemia treatment approach, and glycated haemoglobin concentration on the risk of severe hypoglycaemia: post hoc epidemiological analysis of the ACCORD study. BMJ 2010;340:b5444.

    Article  PubMed Central  PubMed  Google Scholar 

  20. Bonds DE, Miller ME, Bergenstal RM, Buse JB, Byington RP, Cutler JA, et al. The association between symptomatic, severe hypoglycaemia and mortality in type 2 diabetes: retrospective epidemiological analysis of the ACCORD study. BMJ 2010;340:b4909.

    Article  PubMed Central  PubMed  Google Scholar 

  21. Calles-Escandon J, Lovato LC, Simons-Morton DG, Kendall DM, Pop-Busui R, Cohen RM, et al. Effect of intensive compared with standard glycemia treatment strategies on mortality by baseline subgroup characteristics: the Action to Control Cardiovascular Risk in Diabetes (ACCORD) trial. Diabetes Care 2010;33:721–727.

    Article  PubMed Central  PubMed  Google Scholar 

  22. ADVANCE Collaborative Group. Intensive blood glucose control and vascular outcomes in patients with type 2 diabetes. N Engl J Med 2008;358:2560–2572.

    Article  Google Scholar 

  23. Action to Control Cardiovascular Risk in Diabetes Study Group. Effects of intensive glucose lowering in type 2 diabetes. N Engl J Med 2008;358:254525–59.

    Google Scholar 

  24. Reaven PD, Emanuele N, Moritz T, Klein R, Davis M, Glander K, et al. Proliferative diabetic retinopathy in type 2 diabetes is related to coronary artery calcium in the Veterans Affairs Diabetes Trial (VADT). Diabetes Care 2008;31:952–957.

    Article  PubMed  Google Scholar 

  25. Heng XP, Chen KJ. Diabetic intensive treatment and blood vascular complication. Chin J Integr Tradit West Med (Chin) 2008;28:563–566.

    Google Scholar 

  26. Heng XP, Chen KJ. Diabetic intensive treatment and blood vascular complications (2nd). Chin J Integr Tradit West Med (Chin) 2008;28:669–672.

    Google Scholar 

  27. Ray KK, Seshasai SR, Wijesuriya S, Sivakumaran R, Nethercott S, Preiss D, et al. Effect of intensive control of glucose on cardiovascular outcomes and death in patients with diabetes mellitus: a meta-analysis of randomised controlled trials. Lancet 2009;373:1765–1772.

    Article  CAS  PubMed  Google Scholar 

  28. Guo YF. A position statement published by ADA/ACC/ AHA to clarification of doubt for intensive glucose-lowering. China Med Tribune 2009;1-8:C7.

    Google Scholar 

  29. Pan CY. REACH principle should be advocated in the optimization of glycemia-management strategies. China Med Tribune 2009;5-21:A20.

    Google Scholar 

  30. ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010;362:1563–1574.

    Article  Google Scholar 

  31. Chen J. Statins in large dose increase the risk of new-onset diabetes. China Med Tribune 2011;6-30:C2.

    Google Scholar 

  32. Waters DD, Ho JE, DeMicco DA, Breazna A, Arsenault BJ, Wun CC, et al. Predictors of new-onset diabetes in patients treated with atorvastatin: results from 3 large randomized clinical trials. J Am Coll Cardiol 2011;57:1535–1545.

    Article  CAS  PubMed  Google Scholar 

  33. ACCORD Study Group. Effects of intensive bloodpressure control in type 2 diabetes mellitus. N Engl J Med 2010;362:1575–1585.

    Article  Google Scholar 

  34. Heng XP, Huang GL, Xiu LL, Diabetic macroangiopathies. 1st ed. Beijing: People's Military Medical Press; 2011:239–256.

    Google Scholar 

  35. Niswender K. Diabetes and obesity: therapeutic targeting and risk reduction—a complex interplay. Diabetes Obes Metab 2010;12:267–287.

    Article  PubMed  Google Scholar 

  36. Aviles-Santa L, Salinas K, Adams-Huet B, Raskin P. Insulin therapy, glycemic control, and cardiovascular risk factors in young Latin Americans with type 2 diabetes mellitus. J Invenstig Med 2006;54:20–31.

    Article  CAS  Google Scholar 

  37. Schaumberg DA, Glynn RJ, Jenkins AJ, Lyons TJ, Rifai N, Manson JE, et al. Effect of intensive glycemic control on levels of markers of infl ammation in type 1 diabetes mellitus in the diabetes control and complications trial. Circulation 2005;111:2446–2453.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang M, Wang HH, Zang LQ. Research progress on ingredients and mechanisms of hypoglycemic traditional Chinese medicines. J Guangdong Pharmaceut Univ (Chin) 2011;27:320–323

    CAS  Google Scholar 

  39. Bakirel T, Bakirel U, Keles OU, Ulgen SG, Yardibi H. In vivo assessment of antidiabetic and antioxidant activities of rosemary (Rosmarinus officinalis) in alloxan-diabetic rabbits. J Ethnopharmacol 2008;116:64–73.

    Article  PubMed  Google Scholar 

  40. Luo P, Tan ZH, Zhang ZF, Zhang H, Liu XF, Mo ZJ. Scutellarin isolated from Erigeron multiradiatus inhibits high glucose-mediated vascular inflammation. J Pharmaceut Society Japan 2008;128:1293–1299.

    CAS  Google Scholar 

  41. Yudkin JS. Very tight glucose control: may be high risk, low benefit. BMJ 2008;336:683.

    Article  PubMed Central  PubMed  Google Scholar 

  42. Xu A, Wang H, Hoo RL, Sweeney G, Vanhoutte PM, Wang Y, et al. Selective elevation of adiponectin production by the natural compounds derived from a medicinal herb alleviates insulin resistance and glucose intolerance in obese mice. Endocrinology 2009;150:625–633.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Wang J, Ma H, Zhang X, He L, Wu J, Gao X, et al. A novel AMPK activator from Chinese herb medicine and ischemia phosphorylate the cardiac transcription factor FOXO3. Int J Physiol Pathophysiol 2009;1:116–126.

    CAS  Google Scholar 

  44. Chen W, Li YM, Yu MH. Effects of Astragalus polysaccharides on chymase, angiotensin-converting enzyme and angiotensin in diabetic cardiomyopathy in hamsters. J Int Med Res 2007;35:873–877.

    Article  CAS  PubMed  Google Scholar 

  45. Huang SP, Heng XP, Qiu CX, Chen LH. Investigation and thinking about TCM interfering cardiovascular risk factors in obese T2DM. China J Tradit Chin Med Pharm (Chin) 2009;24:1079–1084.

    CAS  Google Scholar 

  46. ACCORD Study Group. Effects of combination lipid therapy in type 2 diabetes mellitus. N Engl J Med 2010;362:1563–1574.

    Article  Google Scholar 

  47. Heng XP, Chen KJ, Hong ZF, He WD, Chu KD, Chen WL, et al. Glucose endothelial cytotoxicity and protection of Dan Gua-Fang, a Chinese herb prescription in HUVEC in hyperglycemia medium. J Diabetes Complic 2009;23:297–303.

    Article  Google Scholar 

  48. Heng XP, Chen KJ, Hong ZF, He WD, Cu KD, Chen WL, et al. Anticolchicine cytotoxicity enhanced by Dan Gua-Fang, a Chinese herb prescription in ECV304 in mediums. Chin J Integr Med 2011;17:126–133.

    Article  PubMed  Google Scholar 

  49. Heng XP, Chen KJ, Hong ZF, He WD, Chu KD, Lin JM, et al. Toxicity Features of high glucose on endothelial cell cycle and protection by Dan Gua-Fang, a Chinese herb prescription in ECV-304 in high glucose medium. Chin J Integr Med 2013;19:596–602.

    Article  CAS  PubMed  Google Scholar 

  50. Heng XP, Chen KJ, Hong ZF, He WD, Chu KD, Chen WL, et al. Research on ROS content variance of inner-ECV 304 in high glucose medium and infl uence of Dangua. Guangming J Tradit Chin Med (Chin) 2008;23:551–555.

    Google Scholar 

  51. Heng XP, Chu KD, Lin Q, He WD, Yang LQ, Lei Y, et al. Researches on Dan Gua-Fang intervention of TNF-a in type 2 diabetic patients with badly blood glucose control. J Fujian Univ Tradit Chin Med (Chin) 2009;19:9–12.

    Google Scholar 

  52. Yang LQ, Huang SP, Heng XP, He WD, Zhou GY. Researches on Dan Gua-Fang treatment of type 2 diabetic patients with badly blood glucose control in long-term. J Fujian Univ Tradit Chin Med (Chin) 2010;20:3–6.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xian-pei Heng  (衡先培).

Additional information

Supported by National Natural Science Foundation of China (No. 81173179, 81473550, 81403329), Focal Point Project of Fujian Province in China (No. 2012Y0037), Research Fund for Traditional Chinese Medicine Focus Lab of Fujian Provincial Department of Health (No. wztn 201304), CHEN Keji Development Fund of Integrative Medicine (No. CKJ2009004), and Special Fund for Key Subject of Fujian University of Traditional Chinese Medicine (No. X2014037)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heng, Xp., Yang, Lq., Chen, Ml. et al. Paradox of using intensive lowering of blood glucose in diabetics and strategies to overcome it and decrease cardiovascular risks. Chin. J. Integr. Med. 21, 791–800 (2015). https://doi.org/10.1007/s11655-015-0780-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-015-0780-5

Keywords

Navigation