Skip to main content

Advertisement

Log in

Protective effect of propyl gallate against oxidized low-density lipoprotein-induced injury of endothelial cells

  • Original Article
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Objective

To evaluate the protective effect of propyl gallate (PG), an alkyl ester of gallic acid which is an active ingredient of Radix Paeoniae, against oxidized low-density lipoprotein (ox-LDL)-induced apoptosis and death in endothelial cells (ECs) and to find out its preliminary mechanism.

Methods

The cultured endothelial cells were divided into normal, model (ox-LDL), control (fetal bovine serum), PG high dose (20 μg/mL), PG middle dose (10 μg/mL), and PG low dose (5 μg/mL) groups, each derived from three different pools of umbilical cords. The model of injured human umbilical vein endothelial cells (HUVECs) was induced by ox-LDL. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, Hoechst 33258 staining, flow cytometry and measurement of nitrogen monoxidum (NO) release were used to evaluate the protective effect of PG against ox-LDL-induced apoptosis and death in HUVECs. To find out the mechanism of this protective effect, the expression of endothelial nitric oxide synthase (eNOS) mRNA, eNOS protein expression, immunofluorescence of intracellular reactive oxygen species (ROS) and activities of malondialdehyde (MDA), superoxidedismutase (SOD) and glutathione peroxidase (GPx) were observed.

Results

PG significantly reduced ox-LDL-induced apoptosis and cell death. The percentage of cells death and apoptosis was significantly higher in the ox-LDL group than that in the control group (P<0.05). Compared with the control group, the cells death and apoptosis of PG group was no different (P>0.05). As compared with the ox-LDL group, results of the PG high dose group showed that cell viability was significantly increased (P<0.05), the level of NO release, expression of eNOS mRNA, densitometric value of eNOS protein expression, as well as the activities of SOD and GPx were all significantly higher (all P<0.05).

Conclusion

PG could potentially serve as a novel endothelial protective agent against ox-LDL-induced injury of endothelial cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ximenes VF, Lopes MG, Petrônio MS, Regasini LO, Silva DH, da Fonseca LM. Inhibitory effect of gallic acid and its esters on 2,2′-azobis(2-amidinopropane) hydrochloride (AAPH)-induced hemolysis and depletion of intracellular glutathione in erythrocytes. J Agric Food Chem 2010;58:5355–5362.

    Article  CAS  PubMed  Google Scholar 

  2. Chen CH, Liu TZ, Chen CH, Wong CH, Chen CH, Lu FJ, et al. The efficacy of protective effects of tannic acid, gallic acid, ellagic acid, and propyl gallate against hydrogen peroxide-induced oxidative stress and DNA damages in IMR-90 cells. Mol Nutr Food Res 2007;51:962–968.

    Article  CAS  PubMed  Google Scholar 

  3. Voyta JC, Via DP, Butterfield CE, Zetter BR. Identification and isolation of endothelial cells based on their increased uptake of acetylated low density lipoprotein. J Cell Biol 1984;99:2034–2040.

    Article  CAS  PubMed  Google Scholar 

  4. Steinbrecher UP, Parthasarathy S, Leake DS, Witztum JL, Steinberg D. Modification of low density lipoprotein by endothelial cells involves lipid peroxidation and degradation of low density lipoprotein phospholipids. Proc Natl Acad Sci U S A 1984;81:3883–3887.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Mangin E Jr, Kugiyama K, Nguy J, Kerns S, Henry PD. Effects of lysolipids and oxidatively modified low density lipoprotein on endothelium-dependent relaxation of rabbit aorta. Circ Res 1993;72:161–166.

    Article  CAS  PubMed  Google Scholar 

  6. Chen CH, Cartwright J Jr, Li Z, Luo S, Nguyen HH, Gotto AM Jr, et al. Inhibitory effects of hypercholesterolemia and oxidized LDL on angiogenesis-like endothelial growth in rabbit aortic explants: essential role of basic fibroblast growth factor. Arterioscler Thromb Vasc Biol 1997;17:1303–1312.

    Article  CAS  PubMed  Google Scholar 

  7. Upreti GC, Wang Y, Finn A, Sharrock A, Feisst N, Davy M, Jordan RB. U-2012: an improved Lowry protein assay, insensitive to sample color, offering reagent stability and enhanced sensitivity. Biotechniques 2012;52:159–166.

    CAS  PubMed  Google Scholar 

  8. Fukuda M, Tsuchihashi Y, Takamatsu T, Nakanishi K, Fujita S. Fluorescence fading and stabilization in cytofluorometry. Histochemistry 1980;65:269–276.

    Article  CAS  PubMed  Google Scholar 

  9. Keller R, Keist T, Wechsler A, Leist TP, van der Meide PH. Mechanisms of macrophage-mediated tumor cell killing: a comparative analysis of the roles of reactive nitrogen intermediates and tumor necrosis factor. Int J Cancer 1990;46:682–686.

    Article  CAS  PubMed  Google Scholar 

  10. Shao ZH, Li CQ, Vanden Hoek TL, Becker LB, Schumacker PT, Wu JA, et al. Extract from Scutellaria baicalensis Georgi attenuates oxidant stress in cardiomyocytes. J Mol Cell Cardiol 1999;31:1885–1895.

    Article  CAS  PubMed  Google Scholar 

  11. Iqbal J, Whitney P. Use of cyanide and diethyldithiocarbamate in the assay of superoxide dismutases. Free Radic Biol Med 1991;10:69–77.

    Article  CAS  PubMed  Google Scholar 

  12. Richard MJ, Portal B, Meo J, Coudray C, Hadjian A, Favier A. Malondialdehyde kit evaluated for determining plasma and lipoprotein fractions that react with thiobarbituric acid. Clin Chem 1992;38:704–709.

    CAS  PubMed  Google Scholar 

  13. Noels H, Zhou B, Tilstam PV, Theelen W, Li X, Pawig L, et al. Deficiency of endothelial CXCR4 reduces reendothelialization and enhances neointimal hyperplasia after vascular injury in atherosclerosis-prone mice. Arterioscler Thromb Vasc Biol 2014;346:1209–1220.

    Article  Google Scholar 

  14. Xu H, Wang D, Peng C, Huang X, Ou M, Wang N, et al. Rabbit sera containing compound danshen dripping pill attenuate leukocytes adhesion to TNF-alpha—activated human umbilical vein endothelial cells by suppressing endothelial ICAM-1 and VCAM-1 expression through NF-kappaB signaling pathway. J Cardiovasc Pharmacol 2014;63:323–332.

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Yao S, Wang S, Jiao P, Song G, Yu Y, et al. D-4F, an apolipoprotein A-I mimetic peptide, protects human umbilical vein endothelial cells from oxidized low-density lipoprotein-induced injury by preventing the downregulation of pigment epithelium-derived factor expression. J Cardiovasc Pharmacol 2014;63:553–561.

    Article  CAS  PubMed  Google Scholar 

  16. Li D, Chen H, Romeo F, Sawamura T, Saldeen T, Mehta JL. Statins modulate oxidized low-density lipoprotein-mediated adhesion molecule expression in human coronary artery endothelial cells: role of LOX-1. J Pharmacol Exp Ther 2002;302:601–605.

    Article  CAS  PubMed  Google Scholar 

  17. Nishimura S, Akagi M, Yoshida K, et al. Oxidized lowdensity lipoprotein (ox-LDL) binding to lectin-like ox-LDL receotor-1 (LOX-1) in cultured bovine articular chondrocytes increases production of intracellular ROS resulting in the activation of NF-kappaB. Osteoarthr Cartil 2004;12:568–576.

    Article  PubMed  Google Scholar 

  18. Cominacini L, Pasini AF, Garbin C, Davoli A, Tosetli ML, Campagnola M, et al. Ox-LDL binding to ox-LDL receotor-1 in endothelial cells induces the activation of NF-kappaB through an increased production of intracellular reactive oxygen species. J Bio Chem 2000;275:12633–12636.

    Article  CAS  Google Scholar 

  19. Yu J, Piao BK, Pei YX, Qi X, Hua BJ. Protective effects of tetrahydropalmatine against gamma-radiation induced damage to human endothelial cells. Life Sci 2010;87:55–63.

    Article  CAS  PubMed  Google Scholar 

  20. Zhou YJ, Yang HW, Wang XG, Zhang H. Hepatocyte growth factor prevents advanced glycation end products-induced injury and oxidative stress through a PI3K/Aktdependent pathway in human endothelial cells. Life Sci 2009;85:670–677.

    Article  CAS  PubMed  Google Scholar 

  21. Dai Y, Mehta JL, Chen M. Glucagon-like peptide-1 receptor agonist liraglutide inhibits endothelin-1 in endothelial cell by repressing nuclear factor-kappa B activation. Cardiovasc Drugs Ther 2013;27:371–380.

    Article  CAS  PubMed  Google Scholar 

  22. Chiou CS, Lin JW, Kao PF, Liu JC, Cheng TH, Chan P. Effects of hesperidin on cyclic strain-induced endothelin-1 release in human umbilical vein endothelial cells. Clin Exp Pharm Physiol 2008;35:938–943.

    Article  CAS  Google Scholar 

  23. Wang H, Joseph JA. Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader. Free Radic Biol Med 1999;27:612–616.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu Ma  (马 路).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Zhu, Xf., Wu, Yy. et al. Protective effect of propyl gallate against oxidized low-density lipoprotein-induced injury of endothelial cells. Chin. J. Integr. Med. 21, 299–306 (2015). https://doi.org/10.1007/s11655-014-1980-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-014-1980-6

Keywords

Navigation