Skip to main content
Log in

The occurrence of vanadium in nature: its biogeochemical cycling and relationship with organic matter—a case study of the Early Cambrian black rocks of the Niutitang Formation, western Hunan, China

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Vanadium in the black rocks has economic and environmental impacts. In sediments, it is broadly disseminated as a multivalent metal element mainly sensitive to redox settings. Globally in petroleum, it is considered an abundant component. Vanadium is an essential tool to determine the relationship of the Earth with extra-terrestrial bodies. In the Yangtze region, the black rocks of the Early Cambrian Niutitang Formation are highly enriched in the concentration of V, Co, Ni and Mo. These sediments are comprised of a high total organic carbon content, and the average concentration of vanadium is over 240 ppm. Here we discuss the mechanisms and conditions that were responsible for the accumulation of vanadium in these black sediments in the Yangtze region. The oxygenated ocean water is favorable for the dissolved vanadate species V(V). Therefore, in oxic ocean-water, it can be reduced by organic matters or by H2S to vanadyl ions V(IV), which can facilely be adsorbed to the tiny particles and finally deposit into the sediments with the settling of the particles. The presence of V2O3 in the Niutitang Formation indicates the isomorphism state of vanadium existence in the clay minerals. Clays and pyrite are the most favorable mineral for vanadium enrichment. However, it is suggested the quartz of non-biogenic origin might be unfavorable for vanadium enrichment. Vanadium is mainly derived from the diagenetic transformation of its precursor (porphyrin pigments and chlorophyll) from the organism. During the Early Cambrian period, the massive transgression in the sea level created a favorable environment for organisms to survive. Additionally, the hydrothermal activities brought massive nutrient supply in the form of vanadium and other metal elements from the deep Earth. These creatures consumed the vanadium-rich nutrients, which became a part of their bodies in the form of hard and soft parts. Later on, when these organisms died and were submerged in the sediments. After the diagenetic actions, this vanadium became a part of these black sediments along with organic carbon. Therefore, these black rocks in the Yangtze region are enriched in vanadium and organic carbon. It is suggested the various processes such as adsorption, complexation, and reductions are the main factors responsible for the precipitation of dissolved vanadium into the organically rich sediments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Modified after Huang et al. (2015)

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Adriano DC (1986) Other trace elements. In: Trace elements in the terrestrial environment. Springer, pp 470–501

  • Alloway BJ (1990) Heavy metals in soils. Blackie and Son, Ltd. Glas., London

    Google Scholar 

  • Amthor JE, Grotzinger JP, Schröder S, Bowring SA, Ramezani J, Martin MW, Matter A (2003) Extinction of cloudina and namacalathus at the Precambrian-Cambrian boundary in Oman. Geology 31:431–434

  • Andersson A, Dahlman B, Gee DG, Snall S (1985) The Scandinavian alum shales. Sveriges Geol undersökning. Ser Ca Avh och Uppsats I 4 0

  • Angelone M (1992) Trace elements concentrations in soils and plants of Western Europe. Biogeochem trace Met 19–60

  • Anke M (2004) Vanadium: an element both essential and toxic to plants, animals and humans? In: Anales de La Real Academia Nacional de Farmacia. Real Academia Nacional de Farmacia, pp 961–999

  • Arans DC (1995) Interaction of vanadates with biogenic ligands. Met Ions Biol Syst 31:147

    Google Scholar 

  • Assem FL, Levy LS (2009) A review of current toxicological concerns on vanadium pentoxide and other vanadium compounds: gaps in knowledge and directions for future research. J Toxicol Environ Heal Part B 12:289–306

    Article  Google Scholar 

  • Awan RS, Liu C, Gong H, Dun C, Tong C, Chamssidini LG (2020) Paleo-sedimentary environment in relation to enrichment of organic matter of Early Cambrian black rocks of Niutitang Formation from Xiangxi area China. Mar Pet Geol 112:104057

    Article  Google Scholar 

  • Awan RS, Liu C, Aadil N, Yasin Q, Salaam A, Hussain A, Yang S, Jadoon AK, Wu Y, Gul MA (2021) Organic geochemical evaluation of Cretaceous Talhar Shale for shale oil and gas potential from Lower Indus Basin, Pakistan. J Pet Sci Eng 200:108404

    Article  Google Scholar 

  • Aydin F, Saydut A, Gunduz B, Aydin I, Hamamci C (2012) Chemical speciation of vanadium in coal bottom ash. Clean-Soil Air Water 40:444–448

    Article  Google Scholar 

  • Baker EW, Louda JW (1986) Porphyrins in the geological record. Methods Geochem Geophys 24:125–225

    Google Scholar 

  • Baroch EF (2005) Kirk-Othmer encyclopedia of chemical technology 24

  • Beier JA, Hayes JM (1989) Geochemical and isotopic evidence for paleoredox conditions during deposition of the Devonian-Mississippian New Albany Shale, southern Indiana. Geol Soc Am Bull 101:774–782

    Article  Google Scholar 

  • Bellenger JP, Wichard T, Kraepiel AML (2008a) Vanadium requirements and uptake kinetics in the dinitrogen-fixing bacterium Azotobacter vinelandii. Appl Environ Microbiol 74:1478–1484

    Article  Google Scholar 

  • Bellenger JP, Wichard T, Kustka AB, Kraepiel AML (2008b) Uptake of molybdenum and vanadium by a nitrogen-fixing soil bacterium using siderophores. Nat Geosci 1:243–246

    Article  Google Scholar 

  • Bengtsson S, Tyler G (1976) Vanadium in the environment. London, University of London Monitoring and Assessment Research Centre. Marc Report

  • Blumer M, Snyder WD (1967) Porphyrins of high molecular weight in a Triassic oil shale: evidence by gel permeation chromatography. Chem Geol 2:35–45

    Article  Google Scholar 

  • Boström K, Fisher DE (1971) Volcanogenic uranium, vanadium and iron in Indian Ocean sediments. Earth Planet Sci Lett 11:95–98

    Article  Google Scholar 

  • Boucher LJ, Yen TF (1968) Spectral properties of oxovanadium(IV) complexes. II. Bistrifluoroacetylacetoneethylenediimine. Inorg Chem 7:2665–2667

    Article  Google Scholar 

  • Boyd DW, Kustin K (1984) Vanadium: a versatile biochemical effector with an elusive biological function. Adv Inorg Biochem 6:312–365

    Google Scholar 

  • Breit GN (1989) Vanadium: resources in fossil fuels

  • Breit GN, Wanty RB (1991) Vanadium accumulation in carbonaceous rocks: a review of geochemical controls during deposition and diagenesis. Chem Geol 91:83–97

    Article  Google Scholar 

  • Bruland KW (1980) Oceanographic distributions of cadmium, zinc, nickel, and copper in the North Pacific. Earth Planet Sci Lett 47:176–198

    Article  Google Scholar 

  • Brumsack HJ (1983) A note on Cretaceous black shales and Recent sediments from oxygen deficient environments: paleoceanographic implications. In: Coastal upwelling its sediment record. Springer, pp 471–483

  • Caccia VG, Millero FJ (2003) The distribution and seasonal variation of dissolved trace metals in Florida Bay and adjacent waters. Aquat Geochem 9:111–144

    Article  Google Scholar 

  • Cantley LC, Josephson L, Warner R, Yanagisawa M, Lechene C, Guidotti G (1977) Vanadate is a potent (Na, K)-ATPase inhibitor found in ATP derived from muscle. J Biol Chem 252:7421–7423

    Article  Google Scholar 

  • Carpentier W, Sandra K, De Smet I, Brigé A, De Smet L, Van Beeumen J (2003) Microbial reduction and precipitation of vanadium by Shewanella oneidensis. Appl Environ Microbiol 69:3636–3639

    Article  Google Scholar 

  • Chen J, Wei F, Zheng C, Wu Y, Adriano DC (1991) Background concentrations of elements in soils of China. Water Air Soil Pollut 57:699–712

    Article  Google Scholar 

  • Cheshire MV, Berrow ML, Goodman BA, Mundie CM (1977) Metal distribution and nature of some Cu, Mn and V complexes in humic and fulvic acid fractions of soil organic matter. Geochim Cosmochim Acta 41:1131–1138

    Article  Google Scholar 

  • Clark SHB, Poole FG, Wang Z (2004) Comparison of some sediment-hosted, stratiform barite deposits in China, the United States, and India. Ore Geol Rev 24:85–101

    Article  Google Scholar 

  • Colina M, Gardiner PHE, Rivas Z, Troncone F (2005) Determination of vanadium species in sediment, mussel and fish muscle tissue samples by liquid chromatography–inductively coupled plasma-mass spectrometry. Anal Chim Acta 538:107–115

    Article  Google Scholar 

  • Colley S, Thomson J, Wilson TRS, Higgs NC (1984) Post-depositional migration of elements during diagenesis in brown clay and turbidite sequences in the North East Atlantic. Geochim Cosmochim Acta 48:1223–1235

    Article  Google Scholar 

  • Collier RW (1984) Particulate and dissolved vanadium in the North Pacific Ocean. Nature 309:441–444

    Article  Google Scholar 

  • Coveney RM, Leventhal JS, Glascock MD, Hatch JR (1987) Origins of metals and organic matter in the Mecca Quarry Shale Member and stratigraphically equivalent beds across the Midwest. Econ Geol 82:915–933

    Article  Google Scholar 

  • Derkey PD (1985) Geology and oil shale resources of the Heath Formation. Fergus County, Montana

  • Domingo JL (1996) Vanadium: a review of the reproductive and developmental toxicity. Reprod Toxicol 10:175–182

    Article  Google Scholar 

  • Doshi H, Ray A, Kothari IL, Gami B (2006) Spectroscopic and scanning electron microscopy studies of bioaccumulation of pollutants by algae. Curr Microbiol 53:148–157

    Article  Google Scholar 

  • Duce RA, Hoffman GL (1976) Atmospheric vanadium transport to the ocean. Atmos Environ 10:989–996

    Article  Google Scholar 

  • Dudka S, Markert B (1992) Baseline concentrations of As, Ba, Be, Li, Nb, Sr and V in surface soils of Poland. Sci Total Environ 122:279–290

    Article  Google Scholar 

  • Emerson SR, Huested SS (1991) Ocean anoxia and the concentrations of molybdenum and vanadium in seawater. Mar Chem 34:177–196

    Article  Google Scholar 

  • Emsley J (2011) Nature’s building blocks: an AZ guide to the elements. Oxford University Press

  • Eriksson J (2001) Concentrations of 61 trace elements in sewage sludge, farmyard manure, mineral fertiliser, precipitation and in oil and crops. Swedish Environmental Protection Agency Stockholm

  • Evans HT, White JS (1987) The colorful vanadium minerals: a brief review and a new classification. Mineral Rec 18:333–340

    Google Scholar 

  • Ferreira A, Inácio MM, Morgado P, Batista MJ, Ferreira L, Pereira V, Pinto MS (2001) Low-density geochemical mapping in Portugal. Appl Geochem 16:1323–1331

    Article  Google Scholar 

  • Filby RH, Van Berkel GJ (1987) Geochemistry of metal complexes in petroleum, source rocks, and coals: an overview. ACS Publications

  • Gamble DS, Schnitzer M (1973) The chemistry of fulvic acid and its reactions with metal ions. In: Metals and metal-organic interactions in natural waters, pp 265–302

  • Gao P, He Z, Li S, Lash GG, Li B, Huang B, Yan D (2018) Volcanic and hydrothermal activities recorded in phosphate nodules from the Lower Cambrian Niutitang Formation black shales in South China. Palaeogeogr Palaeoclimatol Palaeoecol 505:381–397

    Article  Google Scholar 

  • Goc A (2006) Biological activity of vanadium compounds. Cent Eur J Biol 1:314–332

    Google Scholar 

  • Goncalves MLS, Mota AM (1987) Complexes of vanadyl and uranyl ions with the chelating groups of humic matter. Talanta 34:839–847

    Article  Google Scholar 

  • Govindaraju K (1994) 1994 compilation of working values and sample description for 383 geostandards. Geostand Newsl 18:1–158

    Article  Google Scholar 

  • Granero S, Domingo JL (2002) Levels of metals in soils of Alcalá de Henares, Spain: human health risks. Environ Int 28:159–164

    Article  Google Scholar 

  • Gulbrandsen RA (1966) Chemical composition of phosphorites of the Phosphoria Formation. Geochim Cosmochim Acta 30:769–778

    Article  Google Scholar 

  • Hall PA (2012) Elemental, isotopic and molecular signatures of Early Cambrian marine sediments and a phantom petroleum system in South Australia

  • Han T, Zhu X, Li K, Jiang L, Zhao C, Wang Z (2015) Metal sources for the polymetallic Ni–Mo–PGE mineralization in the black shales of the Lower Cambrian Niutitang Formation. South China Ore Geol Rev 67:158–169

    Article  Google Scholar 

  • Heggie D, Kahn D, Fischer K (1986) Trace metals in metalliferous sediments, MANOP Site M: interfacial pore water profiles. Earth Planet Sci Lett 80:106–116

    Article  Google Scholar 

  • Holan ZR, Volesky B (1994) Biosorption of lead and nickel by biomass of marine algae. Biotechnol Bioeng 43:1001–1009

    Article  Google Scholar 

  • Holland HD (1979) Metals in black shales; a reassessment. Econ Geol 74:1676–1680

    Article  Google Scholar 

  • Hope BK (1997) An assessment of the global impact of anthropogenic vanadium. Biogeochemistry 37:1–13

    Article  Google Scholar 

  • Hope BK (2008) A dynamic model for the global cycling of anthropogenic vanadium. Glob Biogeochem Cycles 22:GB4021

    Article  Google Scholar 

  • Huang J-H, Huang F, Evans L, Glasauer S (2015) Vanadium: global (bio) geochemistry. Chem. Geol. 417:68–89

    Article  Google Scholar 

  • Imtiaz M, Tu S, Xie Z, Han D, Ashraf M, Rizwan MS (2015) Growth, V uptake, and antioxidant enzymes responses of chickpea (Cicer arietinum L.) genotypes under vanadium stress. Plant Soil 390:17–27

    Article  Google Scholar 

  • Jarvis I, Higgs N (1987) Trace-element mobility during early diagenesis in distal turbidites: Late Quaternary of the Madeira Abyssal Plain, N Atlantic. Geol. Soc. London. Spec Publ 31:179–214

    Article  Google Scholar 

  • Jeandel C, Caisso M, Minster JF (1987) Vanadium behaviour in the global ocean and in the Mediterranean Sea. Mar Chem 21:51–74

    Article  Google Scholar 

  • Jian L, Jixian T, Chenglin L, Dehao F, Xu Z, Mai Z, Zeqing G, Hua K, Awan RS, Zhijie L (2021) Geochemical characteristics and source analysis of natural gas in the saline lacustrine basin in the Western Qaidam basin. J Pet Sci Eng 201:108363

    Article  Google Scholar 

  • Jiang G, Shi X, Zhang S, Wang Y, Xiao S (2011) Stratigraphy and paleogeography of the Ediacaran Doushantuo Formation (ca. 635–551 Ma) in south China. Gondwana Res 19:831–849

    Article  Google Scholar 

  • Jiao XD, Teng Y (2008) Techniques on soil remediation and disposal of vanadium pollution. Chin J Soil Sci 39:448–452

    Google Scholar 

  • Kabata-Pendias A, Pendias H (1979) Trace elements in the biological environment. In: Wyd. Geol., Warsaw 300

  • Kabata-Pendias A, Pendias H (1993) Biochemistry of trace elements. PWN, Warsaw

    Google Scholar 

  • Kay RT, Groschen GE, Cygan G, Dupré DH (2011) Diel cycles in dissolved barium, lead, iron, vanadium, and nitrite in a stream draining a former zinc smelter site near Hegeler. Illinois Chem Geol 283:99–108

    Article  Google Scholar 

  • Koljonen T (1992) Suomen geokemian atIn\, wit 2: morceni-Geochemical Atlas of Finland, Part 2 Till. Geological Survey of Finland, Espoo, p 21X

  • Kříbek B, Kaigl J, Oružinský V (1977) Characteristics of di-and trivalent metal-humic acid complexes on the basis of their molecular-weight distribution. Chem Geol 19:73–81

    Article  Google Scholar 

  • Kustin K, Liu S, Nicolini C, Toppen D (1974) Interaction of catechol and catechol derivatives with dioxovanadium:(V). I. Kinetics of complex formation in acidic media. J Am Chem Soc 96:7410–7415

    Article  Google Scholar 

  • Langeslay RR, Kaphan DM, Marshall CL, Stair PC, Sattelberger AP, Delferro M (2018) Catalytic applications of vanadium: a mechanistic perspective. Chem Rev 119:2128–2191

    Article  Google Scholar 

  • Larsson MA (2014) Vanadium in soils

  • Lee K (1983) Vanadium in the aquatic ecosystem. Adv Environ Sci Technol 13:155–187

    Google Scholar 

  • Lehmann B, Nägler TF, Holland HD, Wille M, Mao J, Pan J, Ma D, Dulski P (2007) Highly metalliferous carbonaceous shale and Early Cambrian seawater. Geology 35:403–406

    Article  Google Scholar 

  • Leventhal JS, Kepferle RC (1982) Geochemistry and geology of strategic metals and uranium in Devonian shales of the eastern interior United States. In: Synthetic fuels from oil shale, II. Institute of Gas Technology Chicago, Ill, pp 72–96

  • Lewan MD (1981) Geochemistry of vanadium and nickel in organic matter of sedimentary rocks

  • Lewan MD (1984) Factors controlling the proportionality of vanadium to nickel in crude oils. Geochim Cosmochim Acta 48:2231–2238

    Article  Google Scholar 

  • Lewan MD, Maynard JB (1982) Factors controlling enrichment of vanadium and nickel in the bitumen of organic sedimentary rocks. Geochim Cosmochim Acta 46:2547–2560

    Article  Google Scholar 

  • Li R, Lu J, Zhang S, Lei J (1999) Organic carbon isotopes of the Sinian and Early Cambrian black shales on Yangtze Platform, China. Sci China Ser D Earth Sci 42:595–603

    Article  Google Scholar 

  • Li Y, Sun S, Chan LS (2013) Phosphogenesis in the 2460 and 2728 million-year-old banded iron formations as evidence for biological cycling of phosphate in the early biosphere. Ecol Evol 3:115–125

    Article  Google Scholar 

  • Licheng Z, Kezhun Z (1992) Background values of trace elements in the source area of the Yangtze River. Sci Total Environ 125:391–404

    Article  Google Scholar 

  • Lide DR (2008) CRC handbook of chemistry and physics. CRC, Boca Raton

    Google Scholar 

  • Liguo C (1997) Evolution and structural styles of the Sichuan foreland basin. In: Global tectonic zones supercontinent formation and disposal: proceedings of the 30th International Geological Congress, Beijing, China, 4–14 August 1996. VSP, p 87

  • Lin TS, Chang CL, Shen F-M (2004) Whole blood vanadium in Taiwanese college students. Bull Environ Contam Toxicol 73:781–786

    Article  Google Scholar 

  • Linstedt KD, Kruger P (1969) Vanadium concentrations in Colorado River basin waters. J Am Water Work Assoc 61:85–88

    Article  Google Scholar 

  • Liu BJ, Xu XS (1994) Atlas of paleogeography and lithofacies of South China: Sinian-Trias

  • Liu ZH, Zhuang XG, Teng GE, Xie XM, Yin LM, Bian LZ, Feng QL, Algeo TJ (2015) The lower Cambrian Niutitang Formation at Yangtiao (Guizhou, SW China): organic matter enrichment, source rock potential, and hydrothermal influences. J Pet Geol 38:411–432

    Article  Google Scholar 

  • Liu Y, Liu G, Qu Q, Qi C, Sun R, Liu H (2017) Geochemistry of vanadium (V) in Chinese coals. Environ Geochem Health 39:967–986

    Article  Google Scholar 

  • Llobet JM, Domingo JL (1984) Acute toxicity of vanadium compounds in rats and mice. Toxicol Lett 23:227–231

    Article  Google Scholar 

  • Lu X, Johnson WD, Hook J (1998) Reaction of vanadate with aquatic humic substances: an ESR and 51V NMR study. Environ Sci Technol 32:2257–2263

    Article  Google Scholar 

  • Luo C (2014) Geological characteristics of gas shale in the lower Cambrian Niutitang Formation of the Upper Yangtze Platform. Chengdu Chengdu University of Technology, pp 115–132

  • Mackenzie AS, Patience RL, Maxwell JR, Vandenbroucke M, Durand B (1980) Molecular parameters of maturation in the Toarcian shales, Paris Basin, France—I. Changes in the configurations of acyclic isoprenoid alkanes, steranes and triterpanes. Geochim Cosmochim Acta 44:1709–1721

    Article  Google Scholar 

  • Mangrich AS, Vugman NV (1988) Bonding parameters of vanadyl ion in humic acid from the Jucu river estuarine region, Brazil. Sci Total Environ 75:235–241

    Article  Google Scholar 

  • Manta DS, Angelone M, Bellanca A, Neri R, Sprovieri M (2002) Heavy metals in urban soils: a case study from the city of Palermo (Sicily), Italy. Sci Total Environ 300:229–243

    Article  Google Scholar 

  • McBRIDE MB (1978) Transition metal bonding in humic acid: an ESR study. Soil Sci 126:200–209

    Article  Google Scholar 

  • McKelvey VE, Strobell Jr JD, Slaughter AL (1987) The vanadiferous zone of the phosphoria formation in western Wyoming and southeastern Idaho

  • Meisch H-U, Benzschawel H, Bielig H-J (1977) The role of vanadium in green plants. Arch Microbiol 114:67–70

    Article  Google Scholar 

  • Micera G, Dallocchio R (1988) Metal complex formation on the surface of amorphous aluminium hydroxide. Part IV. Interaction of oxovanadium (IV) and vanadate (V) with aluminium hydroxide in the presence of succinic, malic and 2-mercaptosuccinic acids. Colloids Surf 34:185–196

    Article  Google Scholar 

  • Michibata H (1996) The mechanism of accumulation of vanadium by ascidians: some progress towards an understanding of this unusual phenomenon. Zoolog Sci 13:489–502

    Article  Google Scholar 

  • Minhas A, Hodgson P, Barrow C, Adholeya A (2016) A review on the assessment of stress conditions for simultaneous production of microalgal lipids and carotenoids. Front Microbiol 7(2016):1–19

    Google Scholar 

  • Miramand P, Fowler SW (1998) Bioaccumulation and transfer of vanadium in marine organisms. Adv Environ Sci Technol YORK 30:167–198

    Google Scholar 

  • Mizuno N, Amano Y, Mizuno T, Nanzyo M (2008) Changes in the heavy mineral content and element concentration of Tarumae-a tephra with distance from the source volcano. Soil Sci Plant Nutr 54:839–845

    Article  Google Scholar 

  • Monaco SL, López L, Rojas H, Garcia D, Premovic P, Briceño H (2002) Distribution of major and trace elements in La Luna Formation, southwestern Venezuelan basin. Org Geochem 33:1593–1608

    Article  Google Scholar 

  • Monakhov IN, Khromov SV, Chernousov PI, Yusfin YS (2004) The flow of vanadium-bearing materials in industry. Metallurgist 48:381–385

    Article  Google Scholar 

  • Morrell BG, Lepp NW, Phipps DA (1986) Vanadium uptake by higher plants: some recent developments. Environ Geochem Health 8:14–18

    Article  Google Scholar 

  • Moskalyk RR, Alfantazi AM (2003) Processing of vanadium: a review. Miner Eng 16:793–805

    Article  Google Scholar 

  • Mulders KJM, Lamers PP, Martens DE, Wijffels RH (2014) Phototrophic pigment production with microalgae: biological constraints and opportunities. J Phycol 50:229–242

    Article  Google Scholar 

  • Nadal M, Schuhmacher M, Domingo JL (2004) Metal pollution of soils and vegetation in an area with petrochemical industry. Sci Total Environ 321:59–69

    Article  Google Scholar 

  • Nason A (1958) The metabolic role of vanadium and molybdenum in plants and animals. Tract clemcnts. Academic Press, New York pp 269–296

  • Nielsen SG, Prytulak J, Wood BJ, Halliday AN (2014) Vanadium isotopic difference between the silicate Earth and meteorites. Earth Planet Sci Lett 389:167–175

    Article  Google Scholar 

  • Nissenbaum A, Swaine DJ (1976) Organic matter-metal interactions in recent sediments: the role of humic substances. Geochim Cosmochim Acta 40:809–816

    Article  Google Scholar 

  • Nriagu JO (1998) History, occurrence, and uses of vanadium. Vanadium Enviro. Chem Biochem 1–36

  • Nriagu JO, Pirrone N (1998) Emission of vanadium into the atmosphere. Adv Environ Sci Technol YORK 30:25–36

    Google Scholar 

  • Och LM, Shields-Zhou GA, Poulton SW, Manning C, Thirlwall MF, Li D, Chen X, Ling H, Osborn T, Cremonese L (2013) Redox changes in Early Cambrian black shales at Xiaotan section, Yunnan Province, south China. Precambrian Res 225:166–189

    Article  Google Scholar 

  • Oehler JH, Aizenshtat Z, Schopf JW (1974) Thermal alteration of blue-green algae and blue-green algal chlorophyll. Am Assoc Pet Geol Bull 58:124–132

    Google Scholar 

  • Orberger B, Vymazalova A, Wagner C, Fialin M, Gallien JP, Wirth R, Pasava J, Montagnac G (2007) Biogenic origin of intergrown Mo-sulphide-and carbonaceous matter in Lower Cambrian black shales (Zunyi Formation, southern China). Chem Geol 238:213–231

    Article  Google Scholar 

  • Ortiz-Bernad I, Anderson RT, Vrionis HA, Lovley DR (2004) Vanadium respiration by Geobacter metallireducens: novel strategy for in situ removal of vanadium from groundwater. Appl Environ Microbiol 70:3091–3095

    Article  Google Scholar 

  • Ovari M, Csukas M, Zaray GY (2001) Speciation of beryllium, nickel, and vanadium in soil samples from Csepel Island, Hungary. Fresenius J Anal Chem 370:768–775

    Article  Google Scholar 

  • Patterson JH, Ramsden AR, Dale LS, Fardy JJ (1986) Geochemistry and mineralogical residences of trace elements in oil shales from Julia Creek, Queensland, Australia. Chem Geol 55:1–16

    Article  Google Scholar 

  • Pi DH, Liu CQ, Shields-Zhou GA, Jiang SY (2013) Trace and rare Earth element geochemistry of black shale and kerogen in the Early Cambrian Niutitang Formation in Guizhou province, South China: Constraints for redox environments and origin of metal enrichments. Precambrian Res 225:218–229

    Article  Google Scholar 

  • Piper DZ, Link PK (2002) An upwelling model for the Phosphoria sea: a Permian, ocean-margin sea in the northwest United States. Am Assoc Pet Geol Bull 86:1217–1235

    Google Scholar 

  • Połedniok J, Buhl F (2003) Speciation of vanadium in soil. Talanta 59:1–8

    Article  Google Scholar 

  • Pourang N, Nikouyan A, Dennis JH (2005) Trace element concentrations in fish, surficial sediments and water from northern part of the Persian Gulf. Environ Monit Assess 109:293–316

    Article  Google Scholar 

  • Prasher SO, Beaugeard M, Hawari J, Bera P, Patel RM, Kim SH (2004) Biosorption of heavy metals by red algae (Palmaria palmata). Environ Technol 25:1097–1106

    Article  Google Scholar 

  • Premović PI (1984) Vanadyl ions in ancient marine carbonaceous sediments. Geochim Cosmochim Acta 48:873–877

    Article  Google Scholar 

  • Protasova NA, Kopayeva MT (1985) Trace and dispersed elements in soils of Russian Plateau. Pochvovedeniye 1:29–37

    Google Scholar 

  • Prytulak J, Nielsen SG, Ionov DA, Halliday AN, Harvey J, Kelley KA, Niu YL, Peate DW, Shimizu K, Sims KWW (2013) The stable vanadium isotope composition of the mantle and mafic lavas. Earth Planet Sci Lett 365:177–189

    Article  Google Scholar 

  • Rashid MA (1971) Role of humic acids of marine origin and their different molecular weight fractions in complexing di-and tri-valent metals. Soil Sci 111:298–306

    Article  Google Scholar 

  • Rawlins B, Lister T, Mackenzie A (2002) Trace-metal pollution of soils in northern England. Environ Geol 42:612–620

    Article  Google Scholar 

  • Rehder D (1991) The bioinorganic chemistry of vanadium. Angew Chem Int Ed Engl 30:148–167

    Article  Google Scholar 

  • Rehder D (2015) The role of vanadium in biology. Metallomics 7:730–742

    Article  Google Scholar 

  • Riley KW, Saxby JD (1986) Organic matter and vanadium in the Toolebuc Formation, northern Eromanga Basin and southern Carpentaria Basin

  • Ringelband U, Hehl O (2000) Kinetics of vanadium bioaccumulation by the brackish water hydroid Cordylophora caspia (Pallas). Bull Environ Contam Toxicol 65:486–493

    Article  Google Scholar 

  • Sabbioni E, Goetz L, Bignoli G (1984) Health and environmental implications of trace metals released from coal-fired power plants: an assessment study of the situation in the European Community. Sci Total Environ 40:141–154

    Article  Google Scholar 

  • Sadiq M (1988) Thermodynamic solubility relationships of inorganic vanadium in the marine environment. Mar Chem 23:87–96

    Article  Google Scholar 

  • Salminen R, Gregorauskien V (2000) Considerations regarding the definition of a geochemical baseline of elements in the surficial materials in areas differing in basic geology. Appl Geochem 15:647–653

    Article  Google Scholar 

  • Sato Y, Okabe S (1978) Vanadium in sea waters and deposits from Tokyo Bay, Suruga Bay and Harima Nada. J Fac Mar Sci Technol Tokai Univ 11:1–19

    Google Scholar 

  • Schnitzer M, Khan SU (1972) Reactions of humic substances with metal ions and hydrous oxides. Humic Subst Environ 203–251

  • Schroeder HA (1970) Vanadium, air quality monographs 70-13. Am. Pet. Institute, Washington, pp 1–32

    Google Scholar 

  • Shaw TJ, Gieskes JM, Jahnke RA (1990) Early diagenesis in differing depositional environments: the response of transition metals in pore water. Geochim Cosmochim Acta 54:1233–1246

    Article  Google Scholar 

  • Shieh CS, Duedall IW (1988) Role of amorphous ferric oxyhydroxide in removal of anthropogenic vanadium from seawater. Mar Chem 25:121–139

    Article  Google Scholar 

  • Shiller AM, Boyle EA (1987) Dissolved vanadium in rivers and estuaries. Earth Planet Sci Lett 86:214–224

    Article  Google Scholar 

  • Sippel D, Einsle O (2017) The structure of vanadium nitrogenase reveals an unusual bridging ligand. Nat Chem Biol 13:956–960

    Article  Google Scholar 

  • Smichowski P, Gómez D, Rosa S, Polla G (2003) Trace elements content in size-classified volcanic ashes as determined by inductively coupled plasma-mass spectrometry. Microchem J 75:109–117

    Article  Google Scholar 

  • Soares SS, Aureliano M, Joaquim N, Coucelo JM (2003) Cadmium and vanadate oligomers effects on methaemoglobin reductase activity from Lusitanian toadfish: in vivo and in vitro studies. J Inorg Biochem 94:285–290

    Article  Google Scholar 

  • Sozinov NA (2018) Ore potential of Precambrian black shale formation. Rev Bras Geociências 12:506–509

    Google Scholar 

  • Steiner M, Wallis E, Erdtmann B-D, Zhao Y, Yang R (2001) Submarine-hydrothermal exhalative ore layers in black shales from South China and associated fossils—insights into a Lower Cambrian facies and bio-evolution. Palaeogeogr Palaeoclimatol Palaeoecol 169:165–191

    Article  Google Scholar 

  • Tahir M, Awan RS, Muzaffar W, Iltaf KH (2020) Organic geochemical evaluation of the lower cretaceous sembar formation to identify shale-gas potential from the southern Indus Basin Pakistan. N Am Acad Res 3:54–78. https://doi.org/10.5281/zenodo.4023378

    Article  Google Scholar 

  • Takeda A, Kimura K, Yamasaki S (2004) Analysis of 57 elements in Japanese soils, with special reference to soil group and agricultural use. Geoderma 119:291–307

    Article  Google Scholar 

  • Taner MF (2002) Vanadium-geology, processing and applications. In: Proceedings of international symposium on vanadium. Can. Inst. Mining, Metall. Pet., p 265

  • Tang X, Jiang Z, Li Z, Cheng L, Zhang Y, Sun P, Fan C (2017) Factors controlling organic matter enrichment in the Lower Cambrian Niutitang Formation Shale on the eastern shelf margin of the Yangtze Block, China. Interpretation 5:T399–T410

    Article  Google Scholar 

  • Templeton GD III, Chasteen ND (1980) Vanadium-fulvic acid chemistry: conformational and binding studies by electron spin probe techniques. Geochim Cosmochim Acta 44:741–752

    Article  Google Scholar 

  • Tissot BP, Welte DH (1984) Petroleum formation and occurrence—second revised and enlarged edition

  • Trefry JH, Metz S (1989) Role of hydrothermal precipitates in the geochemical cycling of vanadium. Nature 342:531–533

    Article  Google Scholar 

  • Tume P, Bech J, Longan L, Tume L, Reverter F, Sepulveda B (2006) Trace elements in natural surface soils in Sant Climent (Catalonia, Spain). Ecol. Eng. 27:145–152

    Article  Google Scholar 

  • Tuo J, Wu C, Zhang M (2016) Organic matter properties and shale gas potential of Paleozoic shales in Sichuan Basin. China. J. Nat. Gas Sci. Eng. 28:434–446

    Article  Google Scholar 

  • Tuttle ML, Dean WE, Parduhn NL (1983) Inorganic geochemistry of Mahogany zone oil shale in two cores from the Green River Formation. ACS Publications

  • Venkataraman BV, Sudha S (2005) Vanadium toxicity. Asian J Exp Sci 19:127–134

    Google Scholar 

  • Vine JD, Tourtelot EB (1970) Geochemistry of black shale deposits; a summary report. Econ Geol 65:253–272

    Article  Google Scholar 

  • Vinkler P, Lakatos B, Meisel J (1976) Infrared spectroscopic investigations of humic substances and their metal complexes. Geoderma 15:231–242

    Article  Google Scholar 

  • Vinogradov AP (1936) Concerning the origin of vanadium in petroleum and solid bitumens. Coll. Akad. V. L Vernadskii 145

  • Vonk HJ, Waterman TH, Talbot H (1960) Physiology of the Crustacea, vol 1. Academic Press, New York, pp 291–316

    Google Scholar 

  • Wällstedt T, Björkvald L, Gustafsson JP (2010) Increasing concentrations of arsenic and vanadium in (southern) Swedish streams. Appl Geochem 25:1162–1175

    Article  Google Scholar 

  • Wang D, Wilhelmy SAS (2009) Vanadium speciation and cycling in coastal waters. Mar Chem 117:52–58

    Article  Google Scholar 

  • Wann CC, Jiang S-J (1997) Determination of vanadium species in water samples by liquid chromatography-inductively coupled plasma mass spectrometry. Anal Chim Acta 357:211–218

    Article  Google Scholar 

  • Wanty RB (1986) Geochemistry of vanadium in an epigenetic sandstone-hosted vanadium-uranium deposit, Henry basin, Utah

  • Wanty RB, Goldhaber MB (1992) Thermodynamics and kinetics of reactions involving vanadium in natural systems: accumulation of vanadium in sedimentary rocks. Geochim Cosmochim Acta 56:1471–1483

    Article  Google Scholar 

  • Wanty RB, Goldhaber MB, Northrop HR (1990) Geochemistry of vanadium in an epigenetic, sandstone-hosted vanadium-uranium deposit, Henry Basin, Utah. Econ Geol 85:270–284

    Article  Google Scholar 

  • Wedepohl KH (1971) Environmental influences on the chemical composition of shales and clays. Phys Chem Earth 8:307–333

    Article  Google Scholar 

  • Weeks ME (1932) The discovery of the elements. VII. Columbium, tantalum, and vanadium. J Chem Educ 9:863

    Article  Google Scholar 

  • Wehrli B (1987) Vanadium in der Hydrosphäre: Oberflächenkomplexe und Oxidationskinetik

  • Wehrli B, Stumm W (1989) Vanadyl in natural waters: adsorption and hydrolysis promote oxygenation. Geochim Cosmochim Acta 53:69–77

    Article  Google Scholar 

  • Wenger LM, Baker DR (1986) Variations in organic geochemistry of anoxic-oxic black shale-carbonate sequences in the Pennsylvanian of the Midcontinent, USA. Org Geochem 10:85–92

    Article  Google Scholar 

  • Whitfield M, Turner DR (1979) Water–rock partition coefficients and the composition of seawater and river water. Nature 278:132–137

    Article  Google Scholar 

  • WHO (1988) Environmental Health Criteria No. 81. World Heal. Organ., Geneva

    Google Scholar 

  • Wille M, Nägler TF, Lehmann B, Schröder S, Kramers JD (2008) Hydrogen sulphide release to surface waters at the Precambrian/Cambrian boundary. Nature 453:767

    Article  Google Scholar 

  • Wright MT, Belitz K (2010) Factors controlling the regional distribution of vanadium in groundwater. Groundwater 48:515–525

    Article  Google Scholar 

  • Wu C, Tuo J, Zhang M, Sun L, Qian Y, Liu Y (2016) Sedimentary and residual gas geochemical characteristics of the Lower Cambrian organic-rich shales in Southeastern Chongqing. China Mar Pet Geol 75:140–150

    Article  Google Scholar 

  • Xiao S, Knoll AH, Yuan X, Pueschel CM (2004) Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. Am J Bot 91:214–227

    Article  Google Scholar 

  • Xu SN, He PM (2006) Analysis of phenomena for frequent occurrence of red tides and bioremediation by seaweed cultivation. J Fish China 30:554–561

    Google Scholar 

  • Xu J, Li Y-L (2015) An SEM study of microfossils in the black shale of the Lower Cambrian Niutitang Formation, Southwest China: IMPLICATIONS for the polymetallic sulfide mineralization. Ore Geol Rev 65:811–820

    Article  Google Scholar 

  • Xu L, Lehmann B, Jingwen M, Wenjun Q, Andao D (2011) Re-Os age of polymetallic Ni-Mo-PGE-Au mineralization in Early Cambrian black shales of South China—a reassessment. Econ Geol 106:511–522

    Article  Google Scholar 

  • Xu L, Lehmann B, Mao J, Nägler TF, Neubert N, Böttcher ME, Escher P (2012) Mo isotope and trace element patterns of Lower Cambrian black shales in South China: multi-proxy constraints on the paleoenvironment. Chem Geol 318:45–59

    Article  Google Scholar 

  • Yay OD, Alagha O, Tuncel G (2008) Multivariate statistics to investigate metal contamination in surface soil. J Environ Manage 86:581–594

    Article  Google Scholar 

  • Yen TF (1975) Chemical aspects of metals in native petroleum. In: Trace metals in petroleum

  • Zhang A (1985) The geochemistry of vanadium in the marine black rock sequence of Yangjiabao

  • Zhang C (2006) Using multivariate analyses and GIS to identify pollutants and their spatial patterns in urban soils in Galway, Ireland. Environ Pollut 142:501–511

    Article  Google Scholar 

  • Zhang Z, Huang C, Li J, Leonard SS, Lanciotti R, Butterworth L, Shi X (2001) Vanadate-induced cell growth regulation and the role of reactive oxygen species. Arch Biochem Biophys 392:311–320

    Article  Google Scholar 

  • Zhang Y-M, Bao S-X, Liu T, Chen T-J, Huang J (2011) The technology of extracting vanadium from stone coal in China: history, current status and future prospects. Hydrometallurgy 109:116–124

    Article  Google Scholar 

  • Zhang J, Dong H, Zhao L, McCarrick R, Agrawal A (2014) Microbial reduction and precipitation of vanadium by mesophilic and thermophilic methanogens. Chem Geol 370:29–39

    Article  Google Scholar 

  • Zhang Y-Y, He Z-L, Jiang S, Lu S-F, Xiao D-S, Chen G-H, Zhao J-H (2018) Controls on the organic carbon content of the lower Cambrian black shale in the southeastern margin of Upper Yangtze. Pet Sci 15:709–721

    Article  Google Scholar 

  • Zhao L, Zhu X, Feng K, Wang B (2006) Speciation analysis of inorganic vanadium (V (IV)/V (V)) by graphite furnace atomic absorption spectrometry following ion-exchange separation. Int J Environ Anal Chem 86:931–939

    Article  Google Scholar 

  • Zhu M, Zhang J, Yang A, Li G, Steiner M, Erdtmann BD (2003) Sinian-Cambrian stratigraphic framework for shallow-to deep-water environments of the Yangtze Platform: an integrated approach. Prog Nat Sci 13:951–960

    Article  Google Scholar 

  • Zhu B, Jiang S-Y, Yang J-H, Pi D, Ling H-F, Chen Y-Q (2014) Rare Earth element and SrNd isotope geochemistry of phosphate nodules from the lower Cambrian Niutitang Formation, NW Hunan Province, South China. Palaeogeogr Palaeoclimatol Palaeoecol 398:132–143

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation (NNCF) of China for awarding us pecuniary aid with Grant Numbers 41572099, and 41872127 to accomplish this scientific research.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rizwan Sarwar Awan or Chenglin Liu.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awan, R.S., Liu, C., Yang, S. et al. The occurrence of vanadium in nature: its biogeochemical cycling and relationship with organic matter—a case study of the Early Cambrian black rocks of the Niutitang Formation, western Hunan, China. Acta Geochim 40, 973–997 (2021). https://doi.org/10.1007/s11631-021-00482-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-021-00482-2

Keywords

Navigation