Skip to main content
Log in

Numerical Analysis of Heat Transfer Characteristics to Supercritical CO2 in a Vertical Mini-Channel: Transition and Pseudo-Boiling

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Large eddy simulations have been conducted to study upward transitional flows and heat transfer characteristics of supercritical CO2 in a vertical mini-channel. The numerical simulation was carried out on a modified buoyantPimpleFOAM solver in OpenFOAM 7, and was verified using experiment data. Numerical results indicate that increasing the Grashof numbers can reduce the flow stability and make the flow transition earlier. There are four stages of heat transfer in the transition process, i.e., weakened, improved, recovered and normal heat transfer. These heat transfer phenomena in the transition process were explained from three perspectives: thermal boundary layer theory, turbulent transport and pseudo-boiling theory. Heat transfer enhancement during transition is related to the transport of supercritical molecular clusters, and these molecular clusters are regarded as pseudo-bubbles in pseudo-boiling theory. The flow pattern of the pseudo-phases in the dia-Widom process contains single-phase flow, steady pseudo-film flow, unsteady pseudo-film flow, partial pseudo-bubbles flow and flocculent pseudo-film flow. Pseudo-bubbles have similar behaviors to subcritical bubbles, i.e., break-up, deformation, condensation and coalescence. Relevant researches in this work are favorable for understanding the heat transfer mechanism of supercritical fluids during flow transition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abbreviations

c p :

constant-pressure heat capacity

Co :

Courant number

C k,C e :

turbulence constants

d :

bore diameter of tube

g :

gravitational acceleration vector

Gr :

Grashof number

H :

width of channel

h :

specific enthalpy

hf :

heat transfer coefficient

K :

turbulent kinetic energy

L :

length of channel

m :

mass flow rate

Nu :

Nusselt number

p :

pressure

Pr :

Prandtl number

q w :

surface heat flux

Re :

Reynolds number

T :

temperature

t :

time

Tu :

turbulence intensity

U :

velocity vector

u,v :

velocity component

x,y,z :

spatial coordinates

β :

thermal expansivity

δ :

thickness of pseudo-film

ε :

turbulent dissipation rate

λ :

thermal conductivity

μ :

viscosity

ρ :

density

τ :

stress tensor

0:

inlet parameter

b:

bulk average parameter

res:

resolved parameter

SGS:

sub-grid scale parameter

x :

local parameter

w:

wall parameter

DNS:

direct numerical simulation

GL:

gas-like

LES:

large eddy simulation

LL:

liquid-like

PB:

pseudo-bubble

PF:

pseudo-film

SM:

supercritical mesophase

References

  1. Knez Z., Markočič E., Leitgeb M., et al., Industrial applications of supercritical fluids: A review. Energy, 2014, 77: 235–243.

    Article  Google Scholar 

  2. Duffey R.B., Pioro I.L., Experimental heat transfer of supercritical carbon dioxide flowing inside channels (survey). Nuclear Engineering and Design, 2005, 235(8): 913–924.

    Article  Google Scholar 

  3. Goldmann K., Heat transfer to fluids with temperature-dependent properties. Nuclear Development Associates, Inc., White Plains, NY, 1952, No. NDA-10–51.

    Google Scholar 

  4. Holman J.P., Rea S.N., Howard C.E., Forced convection heat transfer to freon 12 near the critical state in a vertical annulus. International Journal of Heat and Mass Transfer, 1965, 8(8): 1095–1102.

    Article  Google Scholar 

  5. Kafengauz N.L., Fedorov M.I., Pseudoboiling and heat transfer in a turbulent flow. Journal of Engineering Physics, 1968, 14(5): 489–490.

    Article  ADS  Google Scholar 

  6. Hall W.B., Heat Transfer near the critical point. Advances in Heat Transfer, 1971, 7: 1–86.

    Article  ADS  Google Scholar 

  7. Atkins P., Paula J.D., Physical chemistry. 8th ed. 2006, New York: W. H. Freeman and Company.

    Google Scholar 

  8. Medard L., Gas encyclopaedia. Vol. 2, Elsevier Science, Amsterdam, 1976.

    Google Scholar 

  9. Sun X., Meng H., Large eddy simulations and analyses of hydrocarbon fuel heat transfer in vertical upward flows at supercritical pressures. International Journal of Heat and Mass Transfer, 2021, 170: 120988.

    Article  Google Scholar 

  10. Tao Z., Cheng Z., Zhu J., et al., Large eddy simulation of supercritical heat transfer to hydrocarbon fuel. International Journal of Heat and Mass Transfer, 2018, 121: 1251–1263.

    Article  Google Scholar 

  11. Cao Y.L., Xu R.N., Yan J.J., et al., Direct numerical simulation of convective heat transfer of supercritical pressure in a vertical tube with buoyancy and thermal acceleration effects. Journal of Fluid Mechanics, 2021, 927: A29.

    Article  ADS  MathSciNet  Google Scholar 

  12. Liu J., Zhao P., Lei M., et al., Numerical investigation of spatial-developing turbulent heat transfer in forced convections at different supercritical pressures. International Journal of Heat and Mass Transfer, 2020, 159: 120128.

    Article  Google Scholar 

  13. Xie J., Xie G., Assessment on heat transfer deterioration to supercritical carbon dioxide in upward flows via large eddy simulation. International Journal of Heat and Fluid Flow, 2022, 95: 108954.

    Article  Google Scholar 

  14. Liu J., Jin Y., Zhao P., et al., Analysis of heat transfer of supercritical water by direct numerical simulation of heated upward pipe flows. International Journal of Thermal Sciences, 2019, 138: 206–218.

    Article  Google Scholar 

  15. He S., Kim W.S., Bae J.H., Assessment of performance of turbulence models in predicting supercritical pressure heat transfer in a vertical tube. International Journal of Heat and Mass Transfer, 2008, 51(19): 4659–4675.

    Article  Google Scholar 

  16. Zhang Y., Zhang C., Jiang J., Numerical simulation of heat transfer of supercritical fluids in circular tubes using different turbulence models. Journal of Nuclear Science and Technology, 2011, 48(3): 366–373.

    Article  ADS  Google Scholar 

  17. Bae Y.Y., A new formulation of variable turbulent Prandtl number for heat transfer to supercritical fluids. International Journal of Heat and Mass Transfer, 2016, 92: 792–806.

    Article  Google Scholar 

  18. Jiang P., Wang Z., Xu R., A modified buoyancy effect correction method on turbulent convection heat transfer of supercritical pressure fluid based on RANS model. International Journal of Heat and Mass Transfer, 2018, 127: 257–267.

    Article  Google Scholar 

  19. Pucciarelli A., Ambrosini W., Use of AHFM for simulating heat transfer to supercritical fluids: Application to carbon dioxide data. International Journal of Heat and Mass Transfer, 2018, 127: 1138–1146.

    Article  Google Scholar 

  20. Tang G., Shi H., Wu Y., et al., A variable turbulent Prandtl number model for simulating supercritical pressure CO2 heat transfer. International Journal of Heat and Mass Transfer, 2016, 102: 1082–1092.

    Article  Google Scholar 

  21. Artemenko S., Krijgsman P., Mazur V., The Widom line for supercritical fluids. Journal of Molecular Liquids, 2017, 238: 122–128.

    Article  Google Scholar 

  22. Nishikawa K., Tanaka I., Correlation lengths and density fluctuations in supercritical states of carbon dioxide. Chemical Physics Letters, 1995, 244(1): 149–152.

    Article  ADS  Google Scholar 

  23. Simeoni G.G., Bryk T., Gorelli F.A., et al., The Widom line as the crossover between liquid-like and gas-like behaviour in supercritical fluids. Nature Physics, 2010, 6(7): 503–507.

    Article  ADS  Google Scholar 

  24. Pioro I., Mokry S., Thermophysical properties at critical and supercritical pressures. Heat Transfer, 2011. DOI: https://doi.org/10.5772/13790.

  25. Khmelinskii I., Woodcock L.V., Supercritical fluid gaseous and liquid states: a review of experimental results. Entropy, 2020, 22(4): 437.

    Article  ADS  Google Scholar 

  26. Banuti D.T., Crossing the Widom-line - Supercritical pseudo-boiling. The Journal of Supercritical Fluids, 2015, 98(2015): 12–16.

    Article  Google Scholar 

  27. Zhang H., Xu J., Zhu X., et al., The K number, a new analogy criterion number to connect pressure drop and heat transfer of sCO2 in vertical tubes. Applied Thermal Engineering, 2021, 182: 116078.

    Article  Google Scholar 

  28. Zhu B., Xu J., Wu X., et al., Supercritical “boiling” number, a new parameter to distinguish two regimes of carbon dioxide heat transfer in tubes. International Journal of Thermal Sciences, 2019, 136: 254–266.

    Article  Google Scholar 

  29. Zhang H., Xu J., Zhu X., Dimensional analysis of flow and heat transfer of supercritical CO2 based on pseudo-boiling theory. Acta Physica Sinica, 2021, 70(4): 044401.

    Article  Google Scholar 

  30. Wang Q., Ma X., Xu J., et al., The three-regime-model for pseudo-boiling in supercritical pressure. International Journal of Heat and Mass Transfer, 2021, 181: 121875.

    Article  Google Scholar 

  31. Banuti D., Thermodynamic analysis and numerical modeling of supercritical injection. University of Stuttgart, Stuttgart, Germany, 2015.

    Google Scholar 

  32. Lapenna P.E., Characterization of pseudo-boiling in a transcritical nitrogen jet. Physics of Fluids, 2018, 30(7): 077106.

    Article  ADS  Google Scholar 

  33. Nasuti F., Pizzarelli M., Pseudo-boiling and heat transfer deterioration while heating supercritical liquid rocket engine propellants. The Journal of Supercritical Fluids, 2021, 168: 105066.

    Article  Google Scholar 

  34. Zeinivand H., Farshchi M., Numerical study of the pseudo-boiling phenomenon in the transcritical liquid oxygen/gaseous hydrogen flame. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2021, 235(8): 893–911.

    Article  Google Scholar 

  35. Indelicato G., Remiddi A., Lapenna P.E., et al., Dataset of wall-resolved large eddy simulations for the investigation of turbulent pseudo-boiling and wall-functions in cryogenic hydrogen pipe flows. AIAA SCITECH 2022 Forum, San Diego, America, 2022. DOI: https://doi.org/10.2514/6.2022-0339.

  36. Gong K., Zhu B., Peng B., et al., Numerical investigation of heat transfer characteristics of scCO2 Flowing in a vertically-upward tube with high mass flux. Entropy, 2022, 24(1): 79.

    Article  ADS  Google Scholar 

  37. Kim W., Menon S., A new dynamic one-equation subgrid-scale model for large eddy simulations. 33rd Aerospace Sciences Meeting and Exhibit, 1995. DOI: https://doi.org/10.2514/6.1995-356.

  38. Zhang Y., Critical transition Reynolds number for plane channel flow. Applied Mathematics and Mechanics, 2017, 38(10): 1415–1424.

    Article  MathSciNet  Google Scholar 

  39. Sano M., Tamai K., A universal transition to turbulence in channel flow. Nature Physics, 2016, 12(3): 249–253.

    Article  ADS  Google Scholar 

  40. Georgiadis N.J., Rizzetta D.P., Fureby C., Large-eddy simulation: current capabilities, recommended practices, and future research. AIAA Journal, 2010, 48(8): 1772–1784.

    Article  ADS  Google Scholar 

  41. Jiang P., Zhang Y., Xu Y., et al., Experimental and numerical investigation of convection heat transfer of CO2 at supercritical pressures in a vertical tube at low Reynolds numbers. International Journal of Thermal Sciences, 2008, 47(8): 998–1011.

    Article  Google Scholar 

  42. Bouris D., Bergeles G., 2D LES of vortex shedding from a square cylinder. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 80(1): 31–16.

    Article  Google Scholar 

  43. Roohi E., Zahiri A.P., Passandideh-Fard M., Numerical simulation of cavitation around a two-dimensional hydrofoil using VOF method and LES turbulence model. Applied Mathematical Modelling, 2013, 37(9): 6469–6488.

    Article  MathSciNet  Google Scholar 

  44. Urbano A., Tanguy S., Huber G., et al., Direct numerical simulation of nucleate boiling in micro-layer regime. International Journal of Heat and Mass Transfer, 2018, 123(2018): 1128–1137.

    Article  Google Scholar 

  45. Lienhard J.H., Heat transfer in flat-plate boundary layers: a correlation for laminar, transitional, and turbulent flow. Journal of Heat Transfer, 2020, 142(6): 061805.

    Article  Google Scholar 

  46. Scheele G.F., Hanratty T.J., Effect of natural convection on stability of flow in a vertical pipe. Journal of Fluid Mechanics, 1962, 14(2): 244–256.

    Article  ADS  Google Scholar 

  47. Shah R.K., London A.L., Laminar flow forced convection in ducts: a source book for compact heat exchanger analytical data. Academic press, 2014.

  48. Bae J.H., Yoo J.Y., Choi H., Direct numerical simulation of turbulent supercritical flows with heat transfer. Physics of Fluids, 2005, 17(10): 105104.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The scientific calculations in this paper have been done on the HPC Cloud Platform of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjing Du.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, B., Wang, W., Xin, G. et al. Numerical Analysis of Heat Transfer Characteristics to Supercritical CO2 in a Vertical Mini-Channel: Transition and Pseudo-Boiling. J. Therm. Sci. 33, 101–113 (2024). https://doi.org/10.1007/s11630-023-1897-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1897-5

Keywords

Navigation