Skip to main content
Log in

Effect of CO2 Opposing Multiple Jets on Thermoacoustic Instability and NOx Emissions in a Lean-Premixed Model Combustor

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

This paper experimentally studied the effect of CO2 opposing multiple jets on the thermoacoustic instability and NOx emissions in a lean-premixed model combustor. The feasibility was verified from three variables: the CO2 jet flow rate, hole numbers, and hole diameters of the nozzles. Results indicate that the control effect of thermoacoustic instability and NOx emissions show a reverse trend with the increase of open area ratio on the whole, and the optimal jet flow rate range is 1ȃ1 L/min with CO2 opposing multiple jets. In this flow rate range, the amplitude and frequency of the dynamic pressure and heat release signals CH* basically decrease as the CO2 flow rate increases, which avoids high-frequency and high-amplitude thermoacoustic instability. The amplitude-damped ratio of dynamic pressure and CH* can reach as high as 98.75% and 93.64% with an optimal open area ratio of 3.72%. NOx emissions also decrease as the jet flow rate increases, and the maximum suppression ratio can reach 68.14%. Besides, the flame shape changes from a steep inverted “V” to a more flat “M”, and the flame length will become shorter with CO2 opposing multiple jets. This research achieved the synchronous control of thermoacoustic instability and NOx emissions, which could be a design reference for constructing a safer and cleaner combustor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCD High-speed:

camera

CH* :

Chemiluminescence/arb.units

CH4 :

Methane

F c :

Suppression ratio of flame length/mm

\(\overline {{N_{\rm{c}}}}\) :

Average suppression ratio/%

OMJ:

Opposing multiple jets

P :

Thermal power/kW

S :

Swirl number

\(\overline {{v_{{\rm{i1}}}}}\) :

Average initial control rate of pressure amplitude/Pa·(L/min)−1

\(\overline {{v_{{\rm{i2}}}}}\) :

Average initial control rate of CH* intensity/arb.units(L/min)−1

η :

Open area ratio

Φ :

Equivalence ratio

φ :

Swirl vane angle/(°)

References

  1. Huang Y., Yang V., Dynamics and stability of lean-premixed swirl-stabilized combustion. Progress in Energy and Combustion Science, 2009, 35(4): 293–364.

    Article  Google Scholar 

  2. Zhao D., Lu Z., Zhao H., et al., A review of active control approaches in stabilizing combustion systems in aerospace industry. Progress in Aerospace Sciences, 2018, 97: 35–60.

    Article  ADS  Google Scholar 

  3. Chen Y., Sun Y., Zhao D., Linear wave dynamics and intrinsic axisymmetric thermoacoustic instability in swirling flame combustors. Aerospace Science and Technology, 2021, 113: 106696.

    Article  Google Scholar 

  4. Li B., Shi B., Zhao X., et al., Oxy-fuel combustion of methane in a swirl tubular flame burner under various oxygen contents: Operation limits and combustion instability. Experimental Thermal and Fluid Science, 2018, 90: 115–124.

    Article  Google Scholar 

  5. Poinsot T., Prediction and control of combustion instabilities in real engines. Proceedings of the Combustion Institute, 2017, 36(1): 1–28.

    Article  MathSciNet  Google Scholar 

  6. Moeck J.P., Durox D., Schuller T., et al., Nonlinear thermoacoustic mode synchronization in annular combustors. Proceedings of the Combustion Institute, 2019, 37(4): 5343–5350.

    Article  Google Scholar 

  7. Palies P., Durox D., Schuller T., et al., Nonlinear combustion instability analysis based on the flame describing function applied to turbulent premixed swirling flames. Combustion and Flame, 2011, 158(10): 1980–1991.

    Article  Google Scholar 

  8. Kabiraj L., Sujith R.I., Nonlinear self-excited thermoacoustic oscillations: intermittency and flame blowout. Journal of Fluid Mechanics, 2012, 713: 376–397.

    Article  ADS  MathSciNet  Google Scholar 

  9. Yang D., Laera D., Morgans A.S., A systematic study of nonlinear coupling of thermoacoustic modes in annular combustors. Journal of Sound and Vibration, 2019, 456: 137–161.

    Article  ADS  Google Scholar 

  10. Song H., Lin Y., Han X., et al., The thermoacoustic instability in a stratified swirl burner and its passive control by using a slope confinement. Energy, 2020, 195: 116956.

    Article  Google Scholar 

  11. Zhao D., Ji C., Han N., et al., Experimental investigation of acoustic damping performance of double- and single-layer perforated liners: Effect of porosity and joint bias-grazing flow. 22nd AIAA/CEAS Aeroacoustics Conference, 2016.

  12. Zhao D., Gutmark E., Reinecke A., Mitigating self-excited flame pulsating and thermoacoustic os-cillations using perforated liners. Science Bulletin, 2019, 64(13): 941–952.

    Article  ADS  Google Scholar 

  13. Zhang G., Wang X., Li L., et al., Effects of perforated liners on controlling combustion instabilities in annular combustors. AIAA Journal, 2020, 58(7): 3100–3114.

    Article  ADS  Google Scholar 

  14. Zhao D., Li X.Y., A review of acoustic dampers applied to combustion chambers in aerospace industry. Progress in Aerospace Sciences, 2015, 74: 114–130.

    Article  ADS  Google Scholar 

  15. Karagozian A.R., The jet in crossflow. Physics of Fluids, 2014, 26(10): 101303.

    Article  ADS  Google Scholar 

  16. Li J., Huang J., Yan M., et al., Experimental study of n-heptane/air combustion in meso-scale burners with porous media. Experimental Thermal and Fluid Science, 2014, 52: 47–58.

    Article  Google Scholar 

  17. Zhou H., Tao C., Effects of annular N2/O2 and CO2/O2 jets on combustion instabilities and NOx emissions in lean-premixed methane flames. Fuel, 2020, 263: 116709.

    Article  Google Scholar 

  18. Murat Altay H., Hudgins D.E., Speth R.L., et al., Mitigation of thermoacoustic instability utilizing steady air injection near the flame anchoring zone. Combustion and Flame, 2010, 157(4): 686–700.

    Article  Google Scholar 

  19. LaBry Z.A., Shanbhogue S.J., Speth R.L., et al., Flow structures in a lean-premixed swirl-stabilized combustor with microjet air injection. Proceedings of the Combustion Institute, 2011, 33(1): 1575–1581.

    Article  Google Scholar 

  20. Uhm J.H., Acharya S., Control of combustion instability with a high-momentum air-jet. Combustion and Flame, 2004, 139(1–2): 106–125.

    Article  Google Scholar 

  21. Uhm J., Acharya S., Role of low-bandwidth open-loop control of combustion instability using a high-momentum air jet—mechanistic details. Combustion and Flame, 2006, 147(1–2): 22–31.

    Article  Google Scholar 

  22. Deshmukh N.N., Sharma S.D., Coefficient of Rayleigh Index based performance evaluation of radial microjet injection technique for thermoacoustic instability control. Measurement, 2020, 151: 107245.

    Article  Google Scholar 

  23. Oztarlik G., Selle L., Poinsot T., et al., Suppression of instabilities of swirled premixed flames with minimal secondary hydrogen injection. Combustion and Flame, 2020, 214: 266–276.

    Article  Google Scholar 

  24. Barbosa S., de La Cruz Garcia M., Ducruix S., et al., Control of combustion in-stabilities by local injection of hydrogen. Proceedings of the Combustion Institute, 2007, 31(2): 3207–3214.

    Article  Google Scholar 

  25. Ghoniem A.F., Annaswamy A., Park S., et al., Stability and emissions control using air injection and H2 addition in premixed combustion. Proceedings of the Combustion Institute, 2005, 30(2): 1765–1773.

    Article  Google Scholar 

  26. Rajpara P., Shah R., Banerjee J., Effect of hydrogen addition on combustion and emission char-acteristics of methane fuelled upward swirl can combustor. International Journal of Hydrogen Energy, 2018, 43(36): 17505–17519.

    Article  Google Scholar 

  27. Zhou H., Tang Q., Ren T., et al., Control of thermoacoustic instabilities by CO2 and N2 jet in cross-flow. Applied Thermal Engineering, 2012, 36: 353–359.

    Article  Google Scholar 

  28. Tao C., Zhou H., Effects of superheated steam on combustion instability and NOx emissions in a model lean premixed gas turbine combustor. Fuel, 2021, 288: 119646.

    Article  Google Scholar 

  29. Tao C., Zhou H., Dilution effects of CO2, Ar, N2 and He microjets on the combustion dynamic and emission characteristics of unsteady premixed flame. Aerospace Science and Technology, 2021, 111: 106537.

    Article  Google Scholar 

  30. Wang D., Ji C., Wang S., et al., Chemical effects of CO2 dilution on CH4 and H2 spherical flame. Energy, 2019, 185: 316–326.

    Article  Google Scholar 

  31. Lee K., Kim H., Park P., et al., CO2 radiation heat loss effects on NOx emissions and combustion instabilities in lean premixed flames. Fuel, 2013, 106: 682–689.

    Article  Google Scholar 

  32. Wei S., Yu M., Pei B., et al., Suppression of CO2 and H2O on the cellular instability of premixed methane/air flame. Fuel, 2020, 264(9): 116862.

    Article  Google Scholar 

  33. Gascoin N., Yang Q., Chetehouna K., Thermal effects of CO2 on the NOx formation behavior in the CH4 diffusion combustion system. Applied Thermal Engineering, 2017, 110: 144–149.

    Article  Google Scholar 

  34. Lee M.C., Seo S.B., Yoon J., et al., Experimental study on the effect of N2, CO2, and steam dilution on the combustion performance of H2 and CO synthetic gas in an industrial gas turbine. Fuel, 2012, 102: 431–138.

    Article  Google Scholar 

  35. Zhou H., Tao C., Liu Z., et al., Optimal control of turbulent premixed combustion instability with annular micropore air jets. Aerospace Science and Technology, 2020, 98: 105650.

    Article  Google Scholar 

  36. Tao C., Zhou H., Effects of different preheated CO2/O2 jet in cross-flow on combustion instabil-ity and emissions in a lean-premixed combustor. Journal of the Energy Institute, 2020, 93(6): 2334–2343.

    Article  Google Scholar 

  37. Deshmukh N.N., Sharma S.D., Suppression of thermoacoustic instability using air injection in horizontal Rijke tube. Journal of the Energy Institute, 2017, 90(3): 485–495.

    Article  Google Scholar 

  38. Xu Z., Zhang Y., Chen Y., Study on flow structure of tandem multiple jets under the effect of regular waves. Ocean Engineering, 2020, 217(3): 107993.

    Article  Google Scholar 

  39. Zhou M., Jiang H., Hu Y., et al., The formation of steady gas film on the inner wall of the radial multiple jets-in-crossflow reactor. Chemical Engineering and Processing-Process Intensification, 2019, 143: 107617.

    Article  Google Scholar 

  40. Chen J., Li J., Yuan L., et al., Flow and flame characteristics of a RP-3 fuelled high temperature rise combustor based on RQL. Fuel, 2019, 235: 1159–1171.

    Article  Google Scholar 

  41. Liu R., Zhou Z., Xiao R., et al., CFD-DEM modelling of mixing of granular materials in multiple jets fluidized beds. Powder Technology, 2020, 361: 315–325.

    Article  Google Scholar 

  42. Kannan B.T., Panchapakesan N.R., Influence of nozzle configuration on the flow field of multiple jets. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 2017, 232(9): 1639–1654.

    Article  Google Scholar 

  43. Kamal M.M., Development of a multiple opposing jets’ burner for premixed flames. Proceed-ings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy, 2012, 226(8): 1032–1049.

    Google Scholar 

  44. Zhou M., Jiang H., Hu Y., et al., Evaluation of mixing performance for the industrial-scale radial multiple jets-in-crossflow mixing structure. Chemical Engineering and Processing-Process Intensification, 2019, 141: 107534.

    Article  Google Scholar 

  45. Doerr T., Blomeyer M., Hennecke D.K., Optimization of multiple jets mixing with a confined cross-flow. Journal of Engineering for Gas Turbines and Power-Transactions of the ASME, 1997, 119(2): 315–321.

    Article  Google Scholar 

  46. Thong C.X., Dally B.B., Birzer C.H., et al., An experimental study on the near flow field of a round jet affected by upstream multi-lateral side-jet. Experimental Thermal and Fluid Science, 2017, 82: 198–211.

    Article  Google Scholar 

  47. Menon R., Gollahalli S.R., Combustion characteristics of interacting multiple jets in cross flow. Combustion Science and Technology, 1988, 60(4–6): 375–389.

    Article  Google Scholar 

  48. Zhou H., Hu L.B., Mitigation of combustion instability and NOx: emissions by microjets in lean premixed flames with different swirl numbers. Journal of Thermal Science, 2023, 32(4): 1697–1709.

    Article  ADS  Google Scholar 

  49. Wachsman A., Park S., Annaswamy A., et al., Simultaneous combustion instability and emissions control using air and fuel modulation. 42nd AIAA Aerospace Sci-ences Meeting and Exhibit, 2004.

  50. Mahesh K., The interaction of jets with crossflow. Annual Review of Fluid Mechanics, 2013, 45(1): 379–407.

    Article  ADS  MathSciNet  Google Scholar 

  51. Sun Y., Sun M., Zhu J., et al., PLIF measurements of instantaneous flame structures and curvature of an acoustically excited turbulent premixed flame. Aerospace Science and Technology, 2020, 104: 105950.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Fund for Distinguished Young Scholars (Grant No. 51825605).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Zhou.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Hu, L. Effect of CO2 Opposing Multiple Jets on Thermoacoustic Instability and NOx Emissions in a Lean-Premixed Model Combustor. J. Therm. Sci. 33, 207–221 (2024). https://doi.org/10.1007/s11630-023-1882-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1882-z

Keywords

Navigation