Skip to main content
Log in

Effects of Pilot Fuel Ratio on Combustion Process: Flow Field Structure and Pollutant Emissions

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

As the only controllable means of a micro gas turbine (MGT) combustor during unit operation, pilot fuel ratio (PFR) is the key to achieving stable combustion and low pollutant emission. This paper discusses the influence of PFR on the inner flow field structure and pollutant emissions. The steady-state three-dimensional RANS method with a 40-step reduced methane-air kinetics mechanism is used to study the reaction flow field and species field with PFR of 9.0%, 12.7%, 15.2% and 17.6%. Results show that, with the decrease in PFR, the axial velocity and temperature near the central axis of the combustion chamber show a tendency to decrease. A similar separation phenomenon occurred in the core pyrolysis reaction zone (measured by HCO) and oxidation zone (measured by OH), which is more conducive to promoting the oxidation of CO. The quantitative effect of the pilot flame on nitrogen oxides (NOx) was separated by using inert gas instead of nitrogen in combustion air. It was found that the NOx produced by the pilot flame under the operation condition with a PFR of 9.0% was 3.2×10−6, accounting for 17.4% of the total NOx emission, which was twice that of PFR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

CCHP:

combined cooling heating and power

DOM:

discrete ordinate method

EDC:

eddy dissipation concept

LES:

large eddy simulation

MGT:

micro gas turbine

NOx :

nitrogen oxides

PFR:

pilot fuel ratio

RTE:

radiative transfer equation

UHC:

unburned hydrocarbons

WSGG:

weighted-sum-of-gray-gases

References

  1. Rist J.F., Dias M.F., Palman M., Zelazo D., Cukurel B., Economic dispatch of a single micro-gas turbine under CHP operation. Applied Energy, 2017, 200: 1–18.

    Article  ADS  Google Scholar 

  2. Liu M., Shi Y., Fang F., Combined cooling, heating and power systems: a survey. Renewable & Sustainable Energy Reviews, 2014, 35: 1–22.

    Article  Google Scholar 

  3. Barsi D., Perrone A., Qu Y., Ratto L., Ricci G., Sergeev V., Zunino P., Compressor and turbine multidisciplinary design for highly efficient micro-gas turbine. Journal of Thermal Science, 2018, 27(3): 259–269.

    Article  ADS  Google Scholar 

  4. Pilavachi P., Power generation with gas turbine systems and combined heat and power. Applied Thermal Engineering, 2000, 20(15): 1421–1429.

    Article  Google Scholar 

  5. Valera-Medina A., Giles A., Pugh D., Morris S., Pohl M., Ortwein A., Investigation of combustion of emulated biogas in a gas turbine test rig. Journal of Thermal Science, 2018, 27(4): 331–340.

    Article  ADS  Google Scholar 

  6. Cabot G., Vauchelles D., Taupin B., Boukhalfa A., Experimental study of lean premixed turbulent combustion in a scale gas turbine chamber. Experimental Thermal and Fluid Science, 2004, 28(7): 683–690.

    Article  Google Scholar 

  7. Ernesto B., Progress in gas turbine performance. InTech, Rijeka, 2013.

    Google Scholar 

  8. Fuligno L., Micheli D., Poloni C., An integrated approach for optimal design of micro gas turbine combustors. Journal of Thermal Science, 2009, 18(2): 173–184.

    Article  ADS  Google Scholar 

  9. Cadorin M., Pinelli M., Vaccari A., Calabria R., Chiariello F., Massoli P., Bianchi E., Analysis of a micro gas turbine fed by natural gas and synthesis gas: MGT test bench and combustor CFD analysis. Journal of Engineering for Gas Turbines and Power, 2012, 134(7): 071401.

    Article  Google Scholar 

  10. Buffi M., Cappelletti A., Rizzo A.M., Martelli F., Chiaramonti D., Combustion of fast pyrolysis bio-oil and blends in a micro gas turbine. Biomass and Bioenergy, 2018, 115: 174–185.

    Article  Google Scholar 

  11. Liu A., Yang Y., Chen L., Zeng W., Wang C., Experimental study of biogas combustion and emissions for a micro gas turbine. Fuel, 2020, 267: 117312.

    Article  Google Scholar 

  12. Lieuwen T., Gas turbine emissions. Cambridge University Press, Cambridge, 2013.

    Book  Google Scholar 

  13. Li L., Lin Y., Fu Z., Zhang C., Emission characteristics of a model combustor for aero gas turbine application. Experimental Thermal and Fluid Science, 2016, 72: 235–248.

    Article  Google Scholar 

  14. Zong C., Lyu Y., Guo D., Li C., Zhu T., Experimental and numerical study on emission characteristics of the double annular swirler under different pilot fuel ratios. In: ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, American Society of Mechanical Engineers, Oslo, Norway, 2018, pp. V04BT04A001.

    Google Scholar 

  15. Cho C.H., Baek G.M., Sohn C.H., Cho J.H., Kim H.S., A numerical approach to reduction of NOx emission from swirl premix burner in a gas turbine combustor. Applied Thermal Engineering, 2013, 59(1–2): 454–463.

    Article  Google Scholar 

  16. Shen W., Liu L., Hu Q., Liu G., Wang J., Zhang N., Wu S., Qiu P., Song S., Combustion characteristics of ignition processes for lean premixed swirling combustor under visual conditions. Energy, 2021, 218: 119521.

    Article  Google Scholar 

  17. Joy J., Wang P.C., Panisilvam J., Yu S.C.M., Numerical investigation of NOx emission reduction in non-premixed lean reverse-flow combustor in a micro gas turbine engine. Emission Control Science and Technology, 2020, 6(2): 285–300.

    Article  Google Scholar 

  18. Rahbari A., Homayoonfar S., Valizadeh E., Aligoodarz M.R., Toghraie D., Effects of micro-combustor geometry and size on the heat transfer and combustion characteristics of premixed hydrogen/air flames. Energy, 2021, 215: 119061.

    Article  Google Scholar 

  19. Amani E., Rahdan P., Pourvosoughi S., Multi-objective optimizations of air partitioning in a gas turbine combustor. Applied Thermal Engineering, 2019, 148: 1292–1302.

    Article  Google Scholar 

  20. Hosseini A.A., Ghodrat M., Moghiman M., Pourhoseini S.H., Numerical study of inlet air swirl intensity effect of a methane-air diffusion flame on its combustion characteristics. Case Studies in Thermal Engineering, 2020, 18: 100610.

    Article  Google Scholar 

  21. Fooladgar E., Tóth P., Duwig C., Characterization of flameless combustion in a model gas turbine combustor using a novel post-processing tool. Combustion and Flame, 2019, 204: 356–367.

    Article  Google Scholar 

  22. Ajvad M., Shih H.-Y., Modeling syngas combustion performance of a can combustor with rotating casing for an innovative micro gas turbine. International Journal of Hydrogen Energy, 2020, 45(55): 31188–31201.

    Article  Google Scholar 

  23. Schluckner C., Gaber C., Landfahrer M., Demuth M., Hochenauer C., Fast and accurate CFD-model for NOx emission prediction during oxy-fuel combustion of natural gas using detailed chemical kinetics. Fuel, 2020, 264: 116841.

    Article  Google Scholar 

  24. Cellek M.S., Flameless combustion investigation of CH4/H2 in the laboratory-scaled furnace. International Journal of Hydrogen Energy, 2020, 45(60): 35208–35222.

    Article  Google Scholar 

  25. Glassman I., Yetter R.A., Glumac N.G., Combustion. Elsevier, Massachusetts, 2014.

    Google Scholar 

  26. Smooke M.D., Reduced kinetic mechanisms and asymptotic approximations for methane-air flames. Springer Berlin Heidelberg, 1991.

    Book  Google Scholar 

  27. Li J., Chou S.K., Yang W.M., Li Z.W., A numerical study on premixed micro-combustion of CH4-air mixture: effects of combustor size, geometry and boundary conditions on flame temperature. Chemical Engineering Journal, 2009, 150(1): 213–222.

    Article  Google Scholar 

  28. Hanson R.K., Salimian S., Survey of rate constants in the N/H/O system. Combustion Chemistry, Springer New York, New York, NY, 1984, pp. 361–421.

    Google Scholar 

  29. Lefebvre A.H., Ballal D.R., Gas turbine combustion: alternative fuels and emissions. 3rd ed., CRC Press, Boca Raton, 2010.

    Book  Google Scholar 

  30. Berger S., Richard S., Duchaine F., Staffelbach G., Gicquel L.Y.M., On the sensitivity of a helicopter combustor wall temperature to convective and radiative thermal loads. Applied Thermal Engineering, 2016, 103: 1450–1459.

    Article  Google Scholar 

  31. Yang X., He Z., Qiu P., Dong S., Tan H., Numerical investigations on combustion and emission characteristics of a novel elliptical jet-stabilized model combustor. Energy, 2019, 170: 1082–1097.

    Article  Google Scholar 

  32. Centeno F.R., Brittes R., França F.H.R., da Silva C.V., Application of the WSGG model for the calculation of gas–soot radiation in a turbulent non-premixed methane–air flame inside a cylindrical combustion chamber. International Journal of Heat and Mass Transfer, 2016, 93: 742–753.

    Article  Google Scholar 

  33. Garten B., Hunger F., Messig D., Stelzner B., Trimis D., Hasse C., Detailed radiation modeling of a partial-oxidation flame. International Journal of Thermal Sciences, 2015, 87: 68–84.

    Article  Google Scholar 

  34. Dorigon L.J., Duciak G., Brittes R., Cassol F., Galarça M., França F.H.R., WSGG correlations based on HITEMP2010 for computation of thermal radiation in non-isothermal, non-homogeneous H2O/CO2 mixtures. International Journal of Heat and Mass Transfer, 2013, 64: 863–873.

    Article  Google Scholar 

  35. Shukla S.K., Shukla P., Ghosh P., Evaluation of numerical schemes using different simulation methods for the continuous phase modeling of cyclone separators. Advanced Powder Technology, 2011, 22(2): 209–219.

    Article  Google Scholar 

  36. Masri A.R., Kalt P.A.M., Barlow R.S., The compositional structure of swirl-stabilised turbulent nonpremixed flames. Combustion and Flame, 2004, 137(1): 1–37.

    Article  Google Scholar 

  37. Al-Abdeli Y.M., Masri A.R., Precession and recirculation in turbulent swirling isothermal jets. Combustion Science and Technology, 2004, 176(5–6): 645–665.

    Article  Google Scholar 

  38. Al-Abdeli Y.M., Masri A.R., Stability characteristics and flowfields of turbulent non-premixed swirling flames. Combustion Theory and Modelling, 2003, 7(4): 731–766.

    Article  ADS  Google Scholar 

  39. De Santis A., Clements A.G., Pranzitelli A., Ingham D.B., Pourkashanian M., Assessment of the impact of subgrid-scale stress models and mesh resolution on the LES of a partially-premixed swirling flame. Fuel, 2020, 281: 118620.

    Article  Google Scholar 

  40. Al-Abdeli Y.M., Masri A.R., Review of laboratory swirl burners and experiments for model validation. Experimental Thermal and Fluid Science, 2015, 69: 178–196.

    Article  Google Scholar 

  41. Duwig C., Nogenmyr K.-J., Chan C.-k., Dunn M.J., Large eddy simulations of a piloted lean premix jet flame using finite-rate chemistry. Combustion Theory and Modelling, 2011, 15(4): 537–568.

    Article  ADS  Google Scholar 

  42. Sun J., Zhang Z., Liu X., Zheng H., Reduced methane combustion mechanism and verification, validation, and accreditation (VV&A) in CFD for NO emission prediction. Journal of Thermal Science, 2021, 30(2): 610–623.

    Article  ADS  Google Scholar 

  43. Yang Y., Kær S.K., Large-eddy simulations of the non-reactive flow in the Sydney swirl burner. International Journal of Heat and fluid flow, 2012, 36: 47–57.

    Article  Google Scholar 

  44. Fairweather M., Woolley R.M., Conditional moment closure calculations of a swirl-stabilized, turbulent nonpremixed methane flame. Combustion and Flame, 2007, 151(3): 397–411.

    Article  Google Scholar 

  45. Tyliszczak A., Boguslawski A., Nowak D., Numerical simulations of combustion process in a gas turbine with a single and multi-point fuel injection system. Applied Energy, 2016, 174: 153–165.

    Article  ADS  Google Scholar 

  46. Zhou B., Brackmann C., Li Q., Wang Z., Petersson P., Li Z., Aldén M., Bai X.-s., Distributed reactions in highly turbulent premixed methane/air flames: Part I. flame structure characterization. Combustion and Flame, 2015, 162(7): 2937–2953.

    Article  Google Scholar 

  47. Zhou B., Brackmann C., Wang Z., Li Z., Richter M., Aldén M., Bai X.-S., Thin reaction zone and distributed reaction zone regimes in turbulent premixed methane/air flames: Scalar distributions and correlations. Combustion and Flame, 2017, 175: 220–236.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Science and Technology Commission of Shanghai Municipality (20dz1204902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Zhu.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, C., Ji, C., Cheng, J. et al. Effects of Pilot Fuel Ratio on Combustion Process: Flow Field Structure and Pollutant Emissions. J. Therm. Sci. 32, 2321–2335 (2023). https://doi.org/10.1007/s11630-023-1837-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1837-4

Keywords

Navigation