Skip to main content

Advertisement

Log in

Evaluation and Optimization of the Thermal Storage Performance of a Triplex-Tube Thermal Energy Storage System with V-Shaped Fins

  • Special Column: Convergence of Carbon Neutral Transition via Energy Storage Technologies
  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Adding fins to a shell-and-tube phase change thermal storage is a simple and effective way to enhance the performance of the phase change heat storage unit, and the proper arrangement of the fins is essential to enhance the performance of the storage unit. To enhance the performance of the triplex-tube thermal storage unit, a novel V-shaped fin structure is presented in this paper. And the heat storage performance of the thermal storage system is studied by numerical simulation. Firstly, the performance of the triplex-tube thermal energy storage unit with different arrangements of V-shaped fins is investigated by a two-dimensional model and compared with the use of the traditional rectangular fin structure, and the optimal fin arrangement is derived. The results show that the V-shaped fins with the optimal arrangement can decrease the time for the PCM melting in the heat storage unit by 31.92% compared to the conventional rectangular fins. On this basis, the influence of fin angle and thickness on the heat storage unit was studied. Then, a three-dimensional model of the thermal storage unit was established. And the effect of the flow parameters (inlet temperature, inlet flow rate) of the heat transfer fluid (HTF) on its performance was discussed in detail. Finally, the stored energy analysis of the whole thermal storage unit is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A Mush :

mushy region constant/kg·(m3 ·s)−1

C p :

specific heat/J·(kg·K)−1

g :

acceleration due to gravity/m·s−2

H :

enthalpy/J·kg−1

ΔH :

latent heat enthalpy

HTF:

heat transfer fluid

h :

sensible enthalpy

I :

V-shaped fin length/mm

L :

latent heat of fusion/J·kg−1

LHTES:

latent heat thermal energy storage

m :

mass/kg

n :

normal vector

P :

pressure/Pa

PCM:

phase change material

Q :

heat/J

q m :

mass flow rate/kg·s−1

R 1 :

TTES unit inner tube radius/mm

R 2 :

TTES unit middle tube radius/mm

\(\overrightarrow{S}\) :

source term

TTES:

triplex-tube thermal energy storage

T :

temperature/K

t :

time/s

\(\overrightarrow{V}\) :

velocity vector

W r :

V-shaped fin thickness/mm

α :

thermal-expansion coefficient/K−1

β :

V-shaped fin angle/(°)

ε :

a small constant

θ :

liquid fraction

λ :

thermal conductivity /W·(m·K)−1

μ :

dynamic viscosity/kg·(m·s)−1

ρ :

density /kg·m−3

Ψ :

interface between the HTF and tube’s walls

Ω :

interface between fin and PCM

inlet:

inlet HTF state

ini:

initial

l:

liquid

s:

solid

tot:

total

lat:

latent

sen:

sensible

ref:

reference

w:

wall

References

  1. Eroglu M., Dursun E., Sevencan S., Song J., Yazici S., Kilic O., A mobile renewable house using PV/wind/fuel cell hybrid power system. International Journal of Hydrogen Energy, 2011, 36: 7985–7992.

    Article  Google Scholar 

  2. Mahdi J.M., Nsofor E.C., Solidification enhancement of PCM in a triplex-tube thermal energy storage system with nanoparticles and fins. Applied Energy, 2018, 211: 975–986.

    Article  ADS  Google Scholar 

  3. Ye W.B., Zhu D.S., Wang N., Effect of the inclination angles on thermal energy storage in a quadrantal cavity. Journal of Thermal Analysis and Calorimetry, 2012, 110: 1487–1492.

    Article  Google Scholar 

  4. Ye W.B., Melting process in a rectangular thermal storage cavity heated from vertical walls. Journal of Thermal Analysis and Calorimetry, 2016, 123: 873–880.

    Article  Google Scholar 

  5. Hong Y., Ye W.B., Huang S.M., Du J., Can the melting behaviors of solid-liquid phase change be improved by inverting the partially thermal-active rectangular cavity? International Journal of Heat and Mass Transfer, 2018, 126: 571–578.

    Article  Google Scholar 

  6. López-Navarro A., Biosca-Taronger J., Corberán J.M., Peñalosa C., Lázaro A., Dolado P., et al., Performance characterization of a PCM storage tank. Applied Energy, 2014, 119: 151–162.

    Article  ADS  Google Scholar 

  7. Lohrasbi S., Bandpy M.G., Ganji D.D., Response surface method optimization of V-shaped fin assisted latent heat thermal energy storage system during discharging process. Alexandria Engineering Journal, 2016, 55: 2065–2076.

    Article  Google Scholar 

  8. Abdulateef A.M., Abdulateef J., Mat S., Sopian K., Elhub B., Mussa M.A., Experimental and numerical study of solidifying phase-change material in a triplex-tube heat exchanger with longitudinal/triangular fins. International Communications in Heat and Mass Transfer, 2018, 90: 73–84.

    Article  Google Scholar 

  9. Ma J., Xu H., Liu S., Peng H., Ling X., Numerical study on solidification behavior and exergy analysis of a latent heat storage unit with innovative circular superimposed longitudinal fins. International Journal of Heat and Mass Transfer, 2021, 169: 120949.

    Article  Google Scholar 

  10. Zauner C., Hengstberger F., Etzel M., Lager D., Hofmann R., Walter H., Experimental characterization and simulation of a fin-tube latent heat storage using high density polyethylene as PCM. Applied Energy, 2016, 179: 237–246.

    Article  ADS  Google Scholar 

  11. Rathod M.K., Banerjee J., Thermal performance enhancement of shell and tube Latent Heat Storage Unit using longitudinal fins. Applied Thermal Engineering, 2015, 75: 1084–1092.

    Article  Google Scholar 

  12. Yildiz Ç., Arıcı M., Nižetić S., Shahsavar A., Numerical investigation of natural convection behavior of molten PCM in an enclosure having rectangular and tree-like branching fins. Energy, 2020, 207: 118223.

    Article  Google Scholar 

  13. Alizadeh M., Pahlavanian M.H., Tohidi M., Ganji D.D., Solidification expedition of Phase Change Material in a triplex-tube storage unit via novel fins and SWCNT nanoparticles. Journal of Energy Storage, 2020, 28: 101188.

    Article  Google Scholar 

  14. Aly K.A., El-Lathy A.R., Fouad M.A., Enhancement of solidification rate of latent heat thermal energy storage using corrugated fins. Journal of Energy Storage, 2019, 24: 100785.

    Article  Google Scholar 

  15. El Ghandouri I., El Maakoul A., Saadeddine S., Meziane M., Design and numerical investigations of natural convection heat transfer of a new rippling fin shape. Applied Thermal Engineering, 2020, 178: 115670.

    Article  Google Scholar 

  16. Borhani S.M., Hosseini M.J., Ranjbar A.A., Bahrampoury R., Investigation of phase change in a spiral-fin heat exchanger. Applied Mathematical Modelling, 2019, 67: 297–314.

    Article  MathSciNet  Google Scholar 

  17. Rozenfeld A., Kozak Y., Rozenfeld T., Ziskind G., Experimental demonstration, modeling and analysis of a novel latent-heat thermal energy storage unit with a helical fin. International Journal of Heat and Mass Transfer, 2017, 110: 692–709.

    Article  Google Scholar 

  18. Yang X., Lu Z., Bai Q., Zhang Q., Jin L., Yan J., Thermal performance of a shell-and-tube latent heat thermal energy storage unit: Role of annular fins. Applied Energy, 2017, 202: 558–570.

    Article  ADS  Google Scholar 

  19. Usman H., Ali H.M., Arshad A., Ashraf M.J., Khushnood S., Janjua M.M., et al., An experimental study of PCM based finned and un-finned heat sinks for passive cooling of electronics. Heat and Mass Transfer, 2018, 54: 3587–3598.

    Article  ADS  Google Scholar 

  20. Chen S.B., Saleem S., Alghamdi M.N., Nisar K.S., Arsalanloo A., Issakhov A., et al., Combined effect of using porous media and nano-particle on melting performance of PCM filled enclosure with triangular double fins. Case Studies in Thermal Engineering, 2021, 25: 100939.

    Article  Google Scholar 

  21. Yao S., Huang X., Study on solidification performance of PCM by longitudinal triangular fins in a triplex-tube thermal energy storage system. Energy, 2021, 227: 120527.

    Article  Google Scholar 

  22. Ye W.B., Guo H.J., Huang S., Hong Y., Research on melting and solidification processes for enhanced double tubes with constant wall temperature/wall heat flux. Heat Transfer Research, 2018, 47: 583–599.

    Article  Google Scholar 

  23. Abdulateef A.M., Mat S., Sopian K., Abdulateef J., Gitan A.A., Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins. Solar Energy, 2017, 155: 142–153.

    Article  ADS  Google Scholar 

  24. Deng S., Nie C., Jiang H., Ye W.B., Evaluation and optimization of thermal performance for a finned double tube latent heat thermal energy storage. International Journal of Heat and Mass Transfer, 2019, 130: 532–544.

    Article  Google Scholar 

  25. Tao Y.B., He Y.L., Qu Z.G., Numerical study on performance of molten salt phase change thermal energy storage system with enhanced tubes. Solar Energy, 2012, 86: 1155–1163.

    Article  ADS  Google Scholar 

  26. Aly K.A., El-Lathy A.R., Fouad M.A., Enhancement of solidification rate of latent heat thermal energy storage using corrugated fins. Journal of Energy Storage, 2019, 24.

  27. Sciacovelli A., Gagliardi F., Verda V., Maximization of performance of a PCM latent heat storage system with innovative fins. Applied Energy, 2015, 137: 707–715.

    Article  ADS  Google Scholar 

  28. Xie Z., Chen L., Sun F., Constructal optimization of twice Y-shaped assemblies of fins by taking maximum thermal resistance minimization as objective. Science China Technological Sciences, 2010, 53: 2756–2764.

    Article  ADS  Google Scholar 

  29. Alizadeh M., Hosseinzadeh K., Ganji D.D., Investigating the effects of hybrid nanoparticles on solid-liquid phase change process in a Y-shaped fin-assisted LHTESS by means of FEM. Journal of Molecular Liquids, 2019, 287: 110931.

    Article  Google Scholar 

  30. Lorenzini G., Oliveira Rocha L.A., Constructal design of Y-shaped assembly of fins. International Journal of Heat and Mass Transfer, 2006, 49: 4552–4557.

    Article  Google Scholar 

  31. Alizadeh M., Hosseinzadeh K., Shahavi M.H., Ganji D.D., Solidification acceleration in a triplex-tube latent heat thermal energy storage system using V-shaped fin and nano-enhanced phase change material. Applied Thermal Engineering, 2019, 163: 114436.

    Article  Google Scholar 

  32. Al-Abidi A.A., Mat S., Sopian K., Sulaiman M.Y., Mohammad A.T., Experimental study of melting and solidification of PCM in a triplex tube heat exchanger with fins. Energy and Buildings, 2014, 68: 33–41.

    Article  Google Scholar 

  33. Abreha B.G., Mahanta P., Trivedi G., Thermal performance evaluation of multi-tube cylindrical LHS system. Applied Thermal Engineering, 2020, 179: 115743.

    Article  Google Scholar 

  34. Sriram M., Bhattacharya A., Analysis and optimization of triple tube phase change material based energy storage system. Journal of Energy Storage, 2021, 36: 102350.

    Article  Google Scholar 

  35. Rahimi M., Ranjbar A.A., Ganji D.D., Sedighi K., Hosseini M.J., Bahrampoury R., Analysis of geometrical and operational parameters of PCM in a fin and tube heat exchanger. International Communications in Heat and Mass Transfer, 2014, 53: 109–115.

    Article  Google Scholar 

  36. Kousha N., Rahimi M., Pakrouh R., Bahrampoury R., Experimental investigation of phase change in a multitube heat exchanger. Journal of Energy Storage, 2019, 23: 292–304.

    Article  Google Scholar 

  37. Singh R.P., Xu H., Kaushik S.C., Rakshit D., Romagnoli A., Charging performance evaluation of finned conical thermal storage system encapsulated with nano-enhanced phase change material. Applied Thermal Engineering, 2019, 151: 176–190.

    Article  Google Scholar 

  38. Muhammad M.D., Badr O., Yeung H., Validation of a CFD melting and solidification model for phase change in vertical cylinders. Numerical Heat Transfer, Part A: Applications, 2015, 68: 501–511.

    Article  ADS  Google Scholar 

  39. Al-Abidi A.A., Mat S., Sopian K., Sulaiman M.Y., Mohammad A.T., Internal and external fin heat transfer enhancement technique for latent heat thermal energy storage in triplex tube heat exchangers. Applied Thermal Engineering, 2013, 53: 147–156.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouguang Yao.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, S., Zuo, M. & Huang, X. Evaluation and Optimization of the Thermal Storage Performance of a Triplex-Tube Thermal Energy Storage System with V-Shaped Fins. J. Therm. Sci. 32, 2048–2064 (2023). https://doi.org/10.1007/s11630-023-1795-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-023-1795-x

Keywords

Navigation