Skip to main content
Log in

Direct Numerical Simulation of the Pulsed Arc Discharge in Supersonic Compression Ramp Flow

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Direct numerical simulation (DNS) of shock wave/turbulent boundary layer interaction (SWTBLI) with pulsed arc discharge is carried out in this paper. The subject in the study is a Ma=2.9 compression flow over a 24-degree ramp. The numerical approaches were validated by the experimental results in the same flow conditions. The heat source model was added to the Navier-Stokes equation to serve as the energy deposition of the pulsed arc discharge. Four streamwise locations are selected to apply energy deposition. The effect of the pulsed arc discharge on the ramp-induced flow separation has been studied in depth. The DNS results demonstrate the incentive locations play a dominant role in suppressing the separated flow. Results show that pulsed heating is characterized by a thermal blockage, which leads to streamwise deflection. The incentive locations upstream the interaction zone of the base flow have a better control effect. The separation bubble shape shows as “spikes”, and the downstream flow of the heated region is accelerated due to the momentum exchange between the upper boundary layer and the bottom boundary layer. The high-speed upper fluid is transferred to the bottom, and thus enhances its ability to resist the flow separation. More stripe vortex structures are also generated at the edge of the flat-plate. Furthermore, the turbulent kinetic disturbance energy is increased in the flow filed. The disturbances that originate from the pulsed heating are capable of increasing the turbulent intensity and then diminishing the trend of flow separation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

C f :

friction coefficient

d′:

density pusation/kg·m−3

E :

dynamic pulsating energy/J

F :

inviscous vector fluxes (ξ coordinate)

G :

inviscous vector fluxes (η coordinate)

H :

inviscous vector fluxes (ς coordinate)

Pr :

Prandtl number

\(\vec{q}\) :

pulsation amplitude vector

Re :

Reynolds number

S C :

source vector

T t :

pulsing time period

U :

conservative variable

u′:

velocity pulsation in x direction

v′:

velocity pulsation in y direction

w′:

velocity pulsation in z direction

δ :

boundary-layer thickness

Θ :

boundary-layer momentum thickness

ξ :

curvilinear coordinate

η :

curvilinear coordinate

ς :

curvilinear coordinate

ϕ :

the phase difference

m:

the maximum

pulse:

PADPA pulse

u :

velocity in x direction

v :

velocity in y direction

w :

velocity in z direction

⋡:

free flow stream

References

  1. Priebe S., Martin M.P., Low-frequency unsteadiness in shock wave-turbulent boundary layer interaction. Journal of Fluid Mechanics, 2012, 699: 1–49.

    Article  ADS  Google Scholar 

  2. Vanstone L., Musta M.N., Seckin S., Clemens N., Experimental study of the mean structure and quasi-conical scaling of a swept-compression-ramp interaction at Mach 2. Journal of Fluid Mechanics, 2018, 841: 1–27.

    Article  ADS  MathSciNet  Google Scholar 

  3. Iovnovich M., Raveh D.E., Numerical study of shock buffet on three-dimensional Wings. AIAA Journal, 2014, 53(2): 449–463.

    Article  ADS  Google Scholar 

  4. Crouch J.D., Garbaruk A., Strelets M., Global instability in the onset of transonic-wing buffet. Journal of Fluid Mechanics, 2019, 881: 3–22.

    Article  ADS  MathSciNet  Google Scholar 

  5. Xie W., Wu Z., Yu A., Guo S., Control of severe shock-wave/boundary-layer interactions in hypersonic Inlets. Journal of Propulsion and Power, 2017, 34(3): 614–623.

    Article  Google Scholar 

  6. Khobragade N., Gustavsson J., Kumar R., Kirby S., Birch T.J., Mai C.L., Characterization of bleedless shockwave boundary layer interaction control for high speed intakes. AIAA Scitech 2020 Forum. AIAA SciTech Forum: American Institute of Aeronautics and Astronautics, 2020.

  7. Urzay J., Supersonic combustion in air-breathing propulsion systems for hypersonic flight. Annual Review of Fluid Mechanics, 2018, 50(1): 593–627.

    Article  ADS  MathSciNet  Google Scholar 

  8. Li L., Huang W., Yan L., Du Z., Fang M., Numerical investigation and optimization on the micro-ramp vortex generator within scramjet combustors with the transverse hydrogen jet. Aerospace Science and Technology, 2019, 84: 570–584.

    Article  Google Scholar 

  9. Dupont P., Piponniau S., Sidorenko A., Debieve J.F., Investigation by particle image velocimetry measurements of oblique shock reflection with separation. AIAA Journal, 2008, 46(6): 1365–1370.

    Article  ADS  Google Scholar 

  10. Daliri A., Farahani M., Sepahi-Younsi J., Novel method for supersonic inlet buzz measurement in wind tunnel. Journal of Propulsion and Power, 2017, 34(1): 273–280.

    Google Scholar 

  11. Dupont P., Haddad C., Debieve J.F., Space and time organization in a shock-induced separated boundary layer. Journal of Fluid Mechanics, 2006, 559: 255–277.

    Article  ADS  Google Scholar 

  12. Dussauge J.P., Piponniau S., Shock/boundary-layer interactions: Possible sources of unsteadiness. Journal of Fluids and Structures, 2008, 24(8): 1166–1175.

    Article  ADS  Google Scholar 

  13. Clemens N.T., Narayanaswamy V., Low-frequency unsteadiness of shock wave/turbulent boundary layer interactions. Annual Review of Fluid Mechanics, 2014, 46: 469–492.

    Article  ADS  MathSciNet  Google Scholar 

  14. Wang H.Y., Li J., Jin D., Zhang Z.B., Tang M.X., Wu Y., Manipulation of ramp-induced shock wave/boundary layer interaction using a transverse plasma jet array. International Journal of Heat and Fluid Flow, 2017, 67: 133–137.

    Article  Google Scholar 

  15. Sun Z., Gan T., Wu Y., Shock-wave/boundary-layer interactions at compression ramps studied by high-speed schlieren. AIAA Journal, 2019: 1–8.

  16. Li Y., Wu Y., Li J., Review of the investigation on plasma flow control in China. International Journal of Flow Control, 2012, 4: 1–18.

    Article  Google Scholar 

  17. Zong H., Kotsonis M., Effect of slotted exit orifice on performance of plasma synthetic jet actuator. Experiments in Fluids, 2017, 58(3): 1–17.

    Article  Google Scholar 

  18. Bletzinger P., Ganguly B. N., Van Wie D., Garscadden A., Plasmas in high speed aerodynamics. Journal of Physics D, 2005, 38(4): 33–57.

    Article  ADS  Google Scholar 

  19. Kriegseis J., Simon B., Grundmann S., Towards in-flight applications? A review on dielectric barrier discharge-based boundary-layer control. Applied Mechanics Reviews, 2016, 68(2): 020802.

    Article  ADS  Google Scholar 

  20. Shang J.S., Surzhikov S., Kimmel R.L., Gaitonde D.V., Menart J., Hayes J., Mechanisms of plasma actuators for hypersonic flow control. Progress in Aerospace Sciences, 2005, 41(8): 642–668.

    Article  ADS  Google Scholar 

  21. Knight D., Survey of magneto-gasdynamic local flow control at high speeds. In Proceedings of 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2004. DOI: https://doi.org/10.2514/6.2004-1191.

  22. Webb N., Clifford C., Samimy M., Control of oblique shock wave/boundary layer interactions using plasma actuators. Experiments in Fluids, 2013, 54: 1545.

    Article  ADS  Google Scholar 

  23. Webb N., Clifford C., Samimy M., An investigation of the control mechanism of plasma actuators in a shock wave-boundary layer interaction. In Proceedings of 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Grapevine (Dallas/Ft. Worth Region), Texas, 2013, AIAA 2013-402.

  24. Gan T., Jin D., Guo S., Wu Y., Li Y., Influence of ambient pressure on the performance of an arc discharge plasma actuator. Contributions to Plasma Physics, 2018, 58(4): 260–268.

    Article  ADS  Google Scholar 

  25. Adams N. A., Direct numerical simulation of turbulent compression ramp flow. Theoretical and Computational Fluid Dynamics, 1998, 12(2): 109–129.

    Article  ADS  Google Scholar 

  26. Adams N. A., Direct simulation of the turbulent boundary layer along a compression ramp at M=3 and Reθ=1685. Journal of Fluid Mechanics, 2000, 420: 47–83.

    Article  ADS  Google Scholar 

  27. Wu M., Martín M. P., Analysis of shock motion in shockwave and turbulent boundary layer interaction using direct numerical simulation data. Journal of Fluid Mechanics, 2008, 594: 71–83.

    Article  ADS  Google Scholar 

  28. Li X. L., Fu D., Ma Y. W., Gao H., Acoustic calculation for supersonic turbulent boundary layer flow. Chinese Physics Letters, 2009, 26(9): 094701.

    Article  ADS  Google Scholar 

  29. Zhu X.K., Yu C.P., Tong F.L., Li X.L., Numerical study on wall temperature effects on shock wave/turbulent boundary-layer interaction. AIAA Journal, 2017, 55(1): 131–140.

    Article  ADS  Google Scholar 

  30. Martin M.P., Taylor E.M., Wu M., Weirs V.G., A bandwidth-optimized WENO scheme for the effective direct numerical simulation of compressible turbulence. Journal of Computational Physics, 2006, 220(1): 270–289.

    Article  ADS  Google Scholar 

  31. Wu M., Martin M. P., Direct numerical simulation of supersonic turbulent boundary layer over a compression ramp. AIAA Journal, 2007, 45(4): 879–889.

    Article  ADS  Google Scholar 

  32. Corke T., Enloe C. L., Wilkinson S. P., Dielectric barrier discharge plasma actuators for flow control. Annual Review of Fluid Mechanics, 2010, 42: 505–529.

    Article  ADS  Google Scholar 

  33. Sun Q., Li Y., Cheng B., Cui W., Liu W., Xiao Q., The characteristics of surface arc plasma and its control effect on supersonic flow. Physics Letters A, 2014, 378: 2672.

    Article  ADS  Google Scholar 

  34. Zhao G.Y., Li Y.H., Liang H., Hua W.Z., Han M.H., Phenomenological modeling of nanosecond pulsed surface dielectric barrier discharge plasma actuation for flow control. Acta Physica Sinica, 2015, 64(1): 015101.

    Google Scholar 

  35. Bookey P., Wyckham C., Smits A., Martin P., New experimental data of STBLI at DNS/LES accessible Reynolds numbers. In Proceedings of 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2005, AIAA 2005-309.

  36. Pirozzoli S., Grasso F. Direct numerical simulation of impinging shock wave/turbulent boundary layer interaction at M=2.25. Physics of Fluids, 2006, 18(6): 065113.

    Article  ADS  Google Scholar 

  37. Yan H., Gaitonde D. Effect of thermally induced perturbation in supersonic boundary layers. Physics of Fluids, 2010, 22(6): 064101.

    Article  ADS  Google Scholar 

  38. Tumin A., Reshotko E. Spatial theory of optimal disturbances in boundary layers. Physics of Fluids, 2001, 13(7): 2097–2104.

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgment

This work was sponsored by the National Natural Science Foundation of China (91941105, 51522606, and 51907205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, G., Li, J. & Tang, M. Direct Numerical Simulation of the Pulsed Arc Discharge in Supersonic Compression Ramp Flow. J. Therm. Sci. 29, 1581–1593 (2020). https://doi.org/10.1007/s11630-020-1380-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-020-1380-5

Keywords

Navigation