Skip to main content
Log in

The Impingement Heat Transfer Data of Inclined Jet in Cooling Applications: A Review

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

On the impingement heat transfer data, the experimental studies of air and liquid jets impingement to the flat surfaces were collected and critically reviewed. The oblique impingements of both single circular and planar slot jets were considered in particular. The review focused on the surface where the jet impingement cooling technique was utilized. The nozzle exit Reynolds numbers based on the hydraulic diameter varied in the range of 1,500–52,000. The oblique angles relative to the plane surface and the dimensionless jet-to-plate spacing vary in the range of 15°–90° and 2–12 respectively. The review suggested that the magnitude of maximum heat transfer shifted more for air jets compared with the liquid jets. The drop in the inclination angle and the jet-to-plate separation led to the increase in the asymmetry of heat transfer distribution. The displacement of maximum Nusselt number (heat transfer) locations was found to be sensitive to the inclination angle and the smaller jet-to-plate distance. Also, the Nusselt number correlations proposed by various researchers were discussed and compared with the results of the cited references.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Polat S., Heat and mass transfer in impingement drying. Drying Technology, 1993, 11(6): 1147–1176.

    Google Scholar 

  2. Han B., Goldstein R.J., Jet-impingement heat transfer in gas turbine systems. Annals of the New York Academy of Sciences, 2001, 934(1): 147–161.

    ADS  Google Scholar 

  3. Viskanta R., Heat transfer to impinging isothermal gas and flame jets. Experimental Thermal and Fluid Science, 1993, 6(2): 111–134.

    ADS  Google Scholar 

  4. Gardon R., Heat transfer between a flat plate and jets of air impinging on it. International Heat Transfer Conference, Part II, 1961: 454–460.

  5. Fabbri M., Jiang S., and Dhir V.K., A comparative study of cooling of high power density electronics using sprays and microjets. Journal of Heat Transfer, 2005, 127(1): 38–48.

    Google Scholar 

  6. Zuckerman N., Lior N., Jet impingement heat transfer: physics, correlations, and numerical modeling. Advances in Heat Transfer, 2006, 39: 565–631.

    Google Scholar 

  7. Bieber M., Kneer R., Rohlfs W., Self-similarity of heat transfer characteristics in laminar submerged and free-surface slot jet impingement. International Journal of Heat and Mass Transfer, 2017, 104: 1341–1352.

    Google Scholar 

  8. McMurray D.C., Myers P.S., Uyehara O.A., Influence of impinging jet variables on local heat transfer coefficients along a flat surface with constant heat flux. Proceedings of the 3 International Heat Transfer Conferences, 1966, 2: 292–299.

    Google Scholar 

  9. Beltaos S., Rajaratnam N., Plane turbulent impinging jets. Journal of Hydraulic Research, 1973, 11(1): 29–59.

    Google Scholar 

  10. Hrycak P., Heat transfer from round impinging jets to a flat plate. International Journal of Heat and Mass Transfer, 1983, 26(12): 1857–1865.

    Google Scholar 

  11. Beitelmal A.H., Saad M.A., Patel C.D., Heat transfer of an air jet impinging on a rough surface. American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD, 1997, 347: 111–118.

    Google Scholar 

  12. Shi Y., Ray M.B., Mujumdar A.S., Computational study of impingement heat transfer under a turbulent slot jet. Industrial & Engineering Chemistry Research, 2002, 41(18): 4643–4651.

    Google Scholar 

  13. Beaubert F., Viazzo S., Large eddy simulations of plane turbulent impinging jets at moderate Reynolds numbers. International Journal of Heat and Fluid Flow, 2003, 24(4): 512–519.

    Google Scholar 

  14. San J.Y., Shiao W.Z., Effects of jet plate size and plate spacing on the stagnation Nusselt number for a confined circular air jet impinging on a flat surface. International Journal of Heat and Mass Transfer, 2006, 49(19–20): 3477–3486.

    Google Scholar 

  15. Kate R.P., Das P.K., Chakraborty S., Hydraulic jumps due to oblique impingement of circular liquid jets on a flat horizontal surface. Journal of Fluid Mechanics, 2007, 573: 247–263.

    ADS  MATH  Google Scholar 

  16. Sagot B., Antonini G., Christgen A., Buron F., Jet impingement heat transfer on a flat plate at a constant wall temperature. International Journal of Thermal Sciences, 2008, 47(12): 1610–1619.

    Google Scholar 

  17. Achari A.M., Das M.K., Conjugate heat transfer study of turbulent slot impinging jet. Journal of Thermal Science and Engineering Applications, 2015, 7(4): 041011.

    Google Scholar 

  18. Gauntner J.W., Hrycak P., Livingood J.N.B., Survey of literature on flow characteristics of a single turbulent jet impinging on a flat plate. NASA Lewis Research Center, Cleveland, OH, United States, 1970, Report No. NASA TN D-5652.

    Google Scholar 

  19. Downs S., James E.H., Jet impingement heat transfer-A literature survey. ASME, AIChE, and ANS, 24th National Heat Transfer Conference and Exhibition, 1987.

  20. Polat S., Huang B., Mujumdar A.S., Douglas W.J.M., Numerical flow and heat transfer under impinging jets: a review. Annual Review of Heat Transfer, 1989, 2(2): 157–197.

    MATH  Google Scholar 

  21. Jambunathan K., Lai E., Moss M.A., Button B.L, A review of heat transfer data for single circular jet impingement. International Journal of Heat and Fluid Flow, 1992, 13(2): 106–115.

    ADS  Google Scholar 

  22. Weigand B., Spring S., Multiple Jet Impingement — A review. Heat Transfer Research, 2011, 42(2): 101–142.

    Google Scholar 

  23. Dewan A., Dutta R., Srinivasan B., Recent trends in computation of turbulent jet impingement heat transfer, Heat Transfer Engineering, 2012, 33(4–5): 447–460.

    ADS  Google Scholar 

  24. Carlomagno G.M., Ianiro A., Thermo-fluid- dynamics of submerged jets impinging at short nozzle-to- plate distance: a review. Experimental Thermal and Fluid Science, 2014, 58: 15–35.

    Google Scholar 

  25. Beltaos S., Oblique impingement of circular turbulent jets. Journal of Hydraulic Research, 1976, 14(1): 17–36.

    Google Scholar 

  26. Perry K.P., Heat transfer by convection from a hot gas jet to a plane surface. Proceedings of the Institution of Mechanical Engineers, 1954, 168(1): 775–784.

    Google Scholar 

  27. Sparrow E.M., Lovell B.J., Heat transfer characteristics of an obliquely impinging circular jet. Journal of Heat Transfer, 1980, 102(2): 202–209.

    ADS  Google Scholar 

  28. Goldstein R.J., Franchett M.E., Heat transfer from a flat surface to an oblique impinging jet. Journal of Heat Transfer, 1988, 110: 84–90.

    ADS  Google Scholar 

  29. Stevens J., Webb B.W., The effect of inclination on local heat transfer under an axisymmetric, free liquid jet. International Journal of Heat and Mass Transfer, 1991, 34(4–5): 1227–1236.

    ADS  Google Scholar 

  30. Ichimiya K., Nasu T., Heat transfer characteristics of an oblique impinging jet with confined wall. Experimental Heat Transfer, Fluid Mechanics and Thermodynamics 1993: 605–610.

  31. Ma C.F., Zheng Q., Sun H., Wu K., Gomi T., Webb B.W., Local characteristics of impingement heat transfer with oblique round free-surface jets of large Prandtl number liquid. International Journal of Heat and Mass Transfer, 1997, 40(10): 2249–1159.

    Google Scholar 

  32. Yan X., Saniei N., Heat transfer from an obliquely impinging circular, air jet to a flat plate. International Journal of Heat and Fluid Flow, 1997, 18(6): 591–599.

    Google Scholar 

  33. Vipat O., Feng S.S., Kim T., Pradeep A.M., Lu T.J., Asymmetric entrainment effect on the local surface temperature of a flat plate heated by an obliquely impinging two-dimensional jet. International Journal of Heat and Mass Transfer, 2009, 52(21–22): 5250–5257.

    Google Scholar 

  34. Beitelmal A.H., Saad M.A., Patel C.D., The effect of inclination on the heat transfer between a flat surface and an impinging two-dimensional air jet. International Journal of Heat and Fluid Flow, 2000, 21(2): 156–163.

    Google Scholar 

  35. Eren H., Celik N., Cooling of a heated flat plate by an obliquely impinging slot jet. International Communications in Heat and Mass Transfer, 2006, 33(3): 372–380.

    Google Scholar 

  36. Akansu Y.E., Sarioglu M., Kuvvet K., Yavuz T., Flow field and heat transfer characteristics in an oblique slot jet impinging on a flat plate. International Communications in Heat and Mass Transfer, 2008, 35(7): 873–880.

    Google Scholar 

  37. Watson E.J., The radial spread of a liquid jet over a horizontal plane. Journal of Fluid Mechanics, 1964, 20(3): 481–499.

    ADS  MathSciNet  MATH  Google Scholar 

  38. Corrsin S., Investigation of flow in an axially symmetrical heated jet of air. UNT Digital Library, 1943: 51–57.

  39. Livingood J.N.B., Hrycak P., Impingement heat transfer from turbulent air jets to flat plates: a literature survey. NANA Technical Memorandum, 1973.

  40. Reichardt H., On a new theory of free turbulence. The Aeronautical Journal, 1943, 47(390): 167–176.

    MathSciNet  MATH  Google Scholar 

  41. Martin H., Heat and mass transfer between impinging gas jets and solid surfaces. Advances in Heat Transfer, 1977, 13: 1–16.

    Google Scholar 

  42. Oztop H.F., Varol Y., Koca A., Firat M., Turan B., Metin I., Experimental investigation of cooling of heated circular disc using inclined circular jet. International Communications in Heat and Mass Transfer, 2011, 38(7): 990–1001.

    Google Scholar 

  43. Attalla M., Salem M., Heat transfer from a flat surface to an inclined impinging jet. Heat and Mass Transfer, 2014, 50(7): 915–922.

    ADS  Google Scholar 

  44. Eckert E.R.G., Drake Jr. R.M., Analysis of heat and mass transfer. McGraw — Hill, New York, 1972.

    MATH  Google Scholar 

  45. Sibulkin M., Heat transfer near the forward stagnation point of a body revolution. Journal of the Aeronautical, 1952, 9: 570–571.

    Google Scholar 

  46. Zumbrunnen D.A., Incropera F.P., Viskanta R., Convective heat transfer distributions on a plate cooled by planar water jets. Journal of Heat Transfer, 1989, 111(4): 889–896.

    Google Scholar 

  47. Stevens J., Local heat transfer coefficient under an axisymmetric, single-phase liquid jet. Heat Transfer in Electronics, American Society of Mechanical Engineers; Heat Transfer Division Series, 1989, 111: 113–119.

    Google Scholar 

  48. Shashikant, Patel D.K., Kumar J., Kumar V., Numerical analysis of conjugate heat transfer due to oblique impingement of turbulent slot jet onto a flat plate. AIP Conference Proceedings, 2018, 1943(1): 020040.

    Google Scholar 

  49. Ingole S.B., Sundaram K.K., Experimental average Nusselt number characteristics with inclined non-confined jet impingement of air for cooling application. Experimental Thermal and Fluid Science, 2016, 77: 124–131.

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the support from Science and Engineering Research Board, Department of Science and Technology, Government of India, for the research grant (ECR/2016/000768).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Devendra Kumar Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pawar, S., Patel, D.K. The Impingement Heat Transfer Data of Inclined Jet in Cooling Applications: A Review. J. Therm. Sci. 29, 1–12 (2020). https://doi.org/10.1007/s11630-019-1200-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-019-1200-y

Keywords

Navigation