Skip to main content
Log in

Investigation on Precooling Effects of 4 K Stirling-Type Pulse Tube Cryocoolers

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Stirling-type pulse tube cryocoolers (SPTCs) working at liquid-helium temperatures are appealing in space applications because of their promising advantages such as high reliability, compactness, etc. Worldwide efforts have been put in to develop SPTCs operating at liquid-helium temperatures especially with helium-4 as the working fluid. Staged structure is essential to reach such low temperatures. Generally, both the regenerator of the last section and the pulse tube together with the phase shifter are precooled by its upper stage or by external cold source to a low temperature of around 20 K. However, the precooling effects on the regenerator and the pulse tube are synthetic in previous studies, and their independent effects have not been studied clearly. In this manuscript, the precooling effects on the regenerator and on the pulse tube together with the phase shifter are tested independently on a unique-designed precooled SPTC. The tested precooling temperature is between 13.3 K and 22 K, and the no-load refrigeration temperature gets down to 3.6 K. Further analyses and numerical calculations have been carried out. It is found that the influence on the regenerator is remarkable, which is different from previous conclusions. It is also found that the precooling effects on the pulse tube are relatively weak because of the large pressure-induced enthalpy flow of a real gas working at the temperatures near to the critical point. Furthermore, the phase shifting capacity is analyzed with two cases and with both helium-4 and helium-3 as working fluids, and it keeps quite constant after optimizing the frequency and the precooling temperature for each case. The investigation on these independent effects will provide valid reference on the precooling mechanism study of SPTCs working down to liquid-helium temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Similar content being viewed by others

References

  1. Radebaugh R., Huang Y., O’Gallagher A., Gary J., Calculated regenerator performance at 4 K with helium-4 and helium-3. Advances in Cryogenic Engineering 53, Chattanooga, TN, Melville, 2008, 985(1): 225–234.

    Article  ADS  Google Scholar 

  2. Chen L., Wu X., Liu X., Pan C., Zhou Y., Wang J., Numerical and experimental study on the characteristics of 4 K gas-coupled Stirling-type pulse tube cryocooler. International Journal of Refrigeration, 2018, 88: 204–210.

    Article  Google Scholar 

  3. Cao Q., Qiu L.M., Gan Z.H., Yu Y.B., Zhi X.Q., A three-stage stirling pulse tube cryocooler approaching 4 K. Proc 16th International Cryocooler Conference, New York, America, 2011, 16: 19–26.

    Google Scholar 

  4. Charrier A., Charles I., Rousset B., Daniel C., J.-M. Duval., Development of a 4 K pulse-tube cold finger for space applications. Proc 18th International Cryocooler Conference, New York, Kluwer Academic, 2012, 18: 1–10.

    Google Scholar 

  5. Bradley P.E., Radebaugh R., Garaway I., Gerecht E., Progress in the development and performance of a high frequency 4 K stirling-type pulse tube Cryocooler. Proc 16th International Cryocooler Conference, New York, America, 2011, 16: 27–34.

    Google Scholar 

  6. Gan Z.H., Li Z.P., Chen J., Dai L., Qiu L.M., Design and preliminary experimental investigation of a 4 K Stirling-type pulse tube cryocooler with precooling. Journal of Zhejiang University: Science A, 2009, 10(9): 1277–1284.

    Article  Google Scholar 

  7. Qiu L.M., Cao Q., Zhi X.Q., Han L., Gan Z.H., Yu Y.B., et al., Operating characteristics of a three-stage Stirling pulse tube cryocooler operating around 5 K. Cryogenics, 2012, 52(7-9): 382–388.

    Article  ADS  Google Scholar 

  8. Gao J.L., Matsubara Y., Experimental investigation of 4 K pulse tube refrigerator. Cryogenics, 1994, 34(1): 25–30.

    Article  Google Scholar 

  9. Olson J., Nast T.C., Evtimov B., Roth E., Development of a 10 K pulse tube cryocooler for space applications. Proc 12th International Cryocooler Conference, New York, America, 2003, pp.: 241–246.

    Google Scholar 

  10. Nast T., Olson J., Champagne P., Evtimov B., Frank D., Roth E., et al., Overview of Lockheed Martin cryocoolers. Cryogenics, 2006, 46(2-3): 164–168.

    Article  ADS  Google Scholar 

  11. Qiu L.M., Cao Q., Zhi X.Q., Gan Z.H., Yu Y.B., Liu Y., A three-stage Stirling pulse tube cryocooler operating below the critical point of helium-4. Cryogenics, 2011, 51(10): 609–612.

    Article  ADS  Google Scholar 

  12. Cao Q., Qiu L.M., Zhi X.Q., Han L., Gan Z.H., Zhang X.B., et al., Impedance magnitude optimization of the regenerator in Stirling pulse tube cryocoolers working at liquid-helium temperatures. Cryogenics, 2013, 58: 38–44.

    Article  ADS  Google Scholar 

  13. Zhi X.Q., Han L., Dietrich M., Gan Z.H., Qiu L.M., Thummes G., A three-stage Stirling pulse tube cryocooler reached 4.26 K with He-4 working fluid. Cryogenics, 2013, 58: 93–96.

    Article  ADS  Google Scholar 

  14. Qiu L.M., Han L., Zhi X.Q., Dietrich M., Gan Z.H., Thummes G., Investigation on phase shifting for a 4 K Stirling pulse tube cryocooler with He-3 as working fluid. Cryogenics, 2015, 69: 44–49.

    Article  ADS  Google Scholar 

  15. Radebaugh R., Huang Y., O’Gallagher A., Gary J., Optimization calculations for a 30 Hz, 4 K regenerator with helium-3 working fluid. Advances in Cryogenic Engineering 57, Tucson, AZ, America, 2010, 55: 1581–1592.

    ADS  Google Scholar 

  16. Charrier A., Charles I., Rousset B., Duval J-M., Daniel C., Low temperature high frequency coaxial pulse tube for space application. Advances in Cryogenic Engineering 59, Tucson, AZ, America, 2014, 1573(1): 1010–1017.

    ADS  Google Scholar 

  17. Dang H., Bao D., Zhang T., Tan J., Zha R., Li J., et al., Theoretical and experimental investigations on the three-stage Stirling-type pulse tube cryocooler using cryogenic phase-shifting approach and mixed regenerator matrices. Cryogenics, 2018, 93: 7–16.

    Article  ADS  Google Scholar 

  18. Chen L., Wu X., Wang J., Liu X., Pan C., Jin H., et al., Study on a high frequency pulse tube cryocooler capable of achieving temperatures below 4K by helium-4. Cryogenics, 2018, 94: 103–109.

    Article  ADS  Google Scholar 

  19. Quan J., Liu Y., Liu D., Zhang K., Liang J., Li J., et al., 4 K high frequency pulse tube cryocooler used for terahertz space application. Chinese Science Bulletin, 2014, 59(27): 3490–3494.

    Article  ADS  Google Scholar 

  20. Hu J.Y., Dai W., Luo E.C., Wu Z.H., Numerical simulation of a three-stage Stirling-type pulse tube cryocooler for 4K operation. Advances in Cryogenic Engineering, 2008, 985(1): 1531–1538.

    Article  ADS  Google Scholar 

  21. Ju Y.L., De Waele A.T.A.M., A computational model for two-stage 4K-pulse tube cooler: Part II. Predicted results. Journal of Thermal Science, 2002, 11(1): 74–79.

    Article  ADS  Google Scholar 

  22. Ju Y., Wang C., Zhou Y., Dynamic experimental study of a multi-bypass pulse tube refrigerator with two-bypass tubes. Journal of Thermal Science, 1998, 7(1): 61–66.

    Article  ADS  Google Scholar 

  23. Wang Y., Wang X., Dai W., Luo E., A cryogen-free Vuilleumier type pulse tube cryocooler operating below 10K. Cryogenics, 2018, 90: 1–6.

    Article  ADS  Google Scholar 

  24. Wang J., Pan C., Zhang T., Luo K., Zhou Y., A novel method to hit the limit temperature of Stirling-type cryocooler. Journal of Applied Physics, 2018, 90: 1–6.

    Google Scholar 

  25. CSIC Pride (Nanjing) Cryogenic Technology Co., Ltd., http://www.724pridecryogenics.com/en/prodetail.asp?id=704, 2018 (accessed on May 17, 2019).

  26. Gedeon D., Sage: Object-Oriented software for cryocooler design. Proc 8th International Cryocooler Conference, New York, America, 1995, 8: 281–281.

    Google Scholar 

  27. Wang Y., Huai X., Heat transfer and entropy generation analysis of an intermediate heat exchanger in ADS. Journal of Thermal Science, 2018, 27(2): 175–183.

    Article  ADS  Google Scholar 

  28. Gao W., Yao M., Chen Y., Li H., Zhang Y., Zhang L., Performance of S-CO2 Brayton cycle and organic Rankine cycle (ORC) combined system considering the diurnal distribution of solar radiation. Journal of Thermal Science, 2019, 28(3): 463–471.

    Article  ADS  Google Scholar 

  29. Cao Q., Qiu L.M., Gan Z.H., Real gas effects on the temperature profile of regenerators. Cryogenics, 2014, 61: 31–37.

    Article  ADS  Google Scholar 

  30. Gary J., O’Gallagher A., Radebaugh R., Huang Y., Marquardt E. REGEN3.3: USER MANUAL, 2006.

    Google Scholar 

  31. Gary J., Radebaugh R., An improved model for the calculation of regenerator performance (REGEN3.1). Proc Fourth Interagency Meeting on Cryocoolers, New York, America, 1991, (4): 165–176.

    Google Scholar 

  32. Vanapalli S., Lewis M., Grossman G., Gan Z.H., Radebaugh R., ter Brake H.J.M., Modeling and experiments on fast cooldown of a 120 Hz pulse tube cryocooler. Advances in Cryogenic Engineering, 2008, 985(1): 1429–1436.

    Article  ADS  Google Scholar 

  33. Gan Z.H., Dong W.Q., Qiu L.M., Zhang X.B., Sun H., He Y.L., et al., A single-stage GM-type pulse tube cryocooler operating at 10.6 K. Cryogenics, 2009, 49(5): 198–201.

    Article  ADS  Google Scholar 

  34. Garaway I., Lewis M., Bradley P., Radebaugh R. Measured and calculated performance of a high frequency, 4 K stage, He-3 regenerator. Proc 16th International Cryocooler Conference, New York, America, 2011, (16): 27–33.

    Google Scholar 

  35. Lewis M.A., Radebaugh R., Measurement of heat conduction through metal spheres. Cryocooler 11, New York, America, 2001: 419–425.

    Google Scholar 

  36. Qiu L.M., Zhi X.Q., Han L., Cao Q., Gan Z.H., Performance improvement of multi-stage pulse tube cryocoolers with a self-precooled pulse tube. Cryogenics, 2012, 52(10): 575–579.

    Article  ADS  Google Scholar 

  37. Rawlins W., Radebaugh R., Bradley P.E., Timmerhaus K.D. Energy flows in an orifice pulse tube refrigerator. Advances in Cryogenic Engineering, New York, America 1994, 39: 1449–1456.

    Article  Google Scholar 

  38. Wang C., Numerical analysis of 4 K pulse tube coolers: Part II. Performances and internal processes. Cryogenics, 1997, 37(4): 215–220.

    Article  ADS  Google Scholar 

  39. Radebaugh R., Thermodynamics of regenerative refrigerators. Generation of Low Temperature and Its Applications, Shonan Tech. Center, Kamakura, Japan, 2003: 1–20.

    Google Scholar 

  40. Gedeon D., Sage User’s Guide. Athens, Ohio: Gedeon Associates, 2010.

    Google Scholar 

  41. Jung J., Jeong S., Expansion efficiency of pulse tube in pulse tube refrigerator including shuttle heat transfer effect. Cryogenics, 2005, 45(5): 386–396.

    Article  ADS  Google Scholar 

  42. Liu S., Chen X., Zhang A., Jiang Z., Wu Y., Zhang H., Investigation of the inertance tube of a pulse tube refrigerator operating at high temperatures. Energy, 2017, 123: 378–385.

    Article  Google Scholar 

  43. Ward B., Clark J., Swift G., Design environment for low-amplitude thermoacoustic energy conversion (DeltaEC Version 6.4b2.7), Los Alamos National Laboratory, 2017. Website: https://www.lanl.gov/org/ddste/aldps/materials-physics-applications/condensed-matter-magnet-science/thermoacoustics/_assets/docs/UsersGuide.pdf

    Google Scholar 

  44. Li S., Dang H., Wu Y., Wang L., Yang K., Investigation on the phase characteristics of high frequency inertance pulse tube cryocoolers above 50 K. Proc 16th International Cryocooler Conference, New York, America, 2011, 16: 259–266.

    Google Scholar 

  45. Huang Y.H., Chen G.B., Arp V.D., Debye equation of state for fluid helium-3. The Journal of Chemical Physics, 2006, 125(5): 1–9.

    Article  Google Scholar 

  46. Huang Y.H., Fang L., Wang X.J., Wang R.Z., Xu L., Thermal conductivity of helium-3 between 3 mK and 300 K. 2011 Joint Cryogenic Engineering and International Cryogenic Materials Conferences, Spokane, America, 2012, (1413): 1849–1856.

    ADS  Google Scholar 

  47. Huang Y., Yu Q., Chen Q., Wang R., Viscosity of liquid and gaseous helium-3 from 3 mK to 500 K, Cryogenics. 2012, 52(10): 538–543.

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by National Natural Science Foundation of China (No.51506152) and the Fundamental Research Funds for the Central Universities (inter-disciplinary program) under the contract No. kx0080020173427. Great support from Prof. L.M. Qiu and Prof. Z.H. Gan from Zhejiang University along with Prof. S.W. Zhu from Tongji University on this research is acknowledged. Revisions of this manuscript by the anonymous reviewers and the editors (Prof. Lin Wang and Prof. Na Zhang) are acknowledged. Revision of this manuscript about English writing by Prof. D. Roundy (emeritus) from Tongji University is acknowledged. Prof. Y. Long from University of Science and Technology Beijing is acknowledged for providing the regenerator material. The authors also appreciate Prof. Dr. Y.H. Huang from Shanghai Jiao Tong University for providing the property data of 3He.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Cao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Li, Z., Luan, M. et al. Investigation on Precooling Effects of 4 K Stirling-Type Pulse Tube Cryocoolers. J. Therm. Sci. 28, 714–726 (2019). https://doi.org/10.1007/s11630-019-1168-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-019-1168-7

Keywords

Navigation