Skip to main content
Log in

Thermal Performance Prediction in the Air Gap of a Rotor-Stator Configuration: Effects of Numerical Models

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

This study is dedicated to a numerical investigation of convective heat transfer on the rotor surfaces of a rotor-stator configuration that is typically found in large hydro-generators. The computational fluid dynamics calculations with two turbulence modelling approaches are used to predict the flow structure and heat transfer in the air gap of the rotor-stator configuration. The steady state mixing plane approach is employed at the interface to couple the rotor and stator components. Results show that the location of mixing plane interface in the air gap plays an important role in the prediction of heat transfer on the pole face. Also, it is indicated that the prediction of temperature distribution on the pole face is greatly affected by the turbulence models used. Furthermore, through a comparison between the pure convective and conjugate heat transfer methodologies, it is shown that the inclusion of solid domain into the numerical model significantly improves the thermal prediction of the solid components of the machine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Traxler-Samek G., Zickermann R., Schwery A., Cooling airflow, losses, and temperatures in large air-cooled synchronous machines. IEEE Transactions on Industrial Electronics, 2010, 57(1): 172–180.

    Article  Google Scholar 

  2. Howey D.A., Childs P.R.N., Holmes A.S., Air gap convection in rotating electrical machines. IEEE Transactions on Industrial Electronics, 2012, 59(3): 1367–1375.

    Article  Google Scholar 

  3. Tong X., Palazzolo A., Suh J., A review of the rotordynamic thermally induced synchronous instability (Morton) effect. Applied Mechanics Reviews, 2017, 69(6): 060801.

    Google Scholar 

  4. Howey D.A., Holmes A.S., Pullen K.R., Measurement and CFD prediction of heat transfer in air-cooled disc-type electrical machines. IEEE Transactions on Industry Applications, 2011, 47(4): 1716–1723.

    Article  Google Scholar 

  5. Toussaint K., Torriano F., Morissette J.-F., Hudon C., Reggio M., CFD analysis of ventilation flow for a scale model hydro-generator. ASME 2011 Power Conference, Denver, Colorado, USA, 2011, 2: 627–637.

    Google Scholar 

  6. Stein P., Pfoster C., Sell M., Galpin P., Hansen T., Computational fluid dynamics modeling of low pressure steam turbine radial diffuser flow by using a novel multiple mixing plane based coupling simulation and validation. Journal of Engineering for Gas Turbines and Power, 2015, 138(4): 041604.

    Article  Google Scholar 

  7. Moffat R.J., What’s new in convective heat transfer?. International Journal of Heat and Fluid Flow, 1998, 19(2): 90–101.

    Article  Google Scholar 

  8. Pickering S.J., Lampard D., Shanel M., Ventilation and heat transfer in a symmetrically ventilated salient pole synchronous machine. International Conference on Power Electronics Machines and Drives, 2002, pp. 462–467.

    Chapter  Google Scholar 

  9. Pickering S.J., Lampard D., Shanel M., Modelling ventilation and cooling of the rotors of salient pole machines. IEMDC/IEEE International Electric Machines and Drives Conference, Cambridge, Massachusett, USA, 2001, pp.: 806–808.

    Google Scholar 

  10. Hettegger M., Streibl B., Biro O., Neudorfer H., Measurements and simulations of the convective heat transfer coefficients on the end windings of an electrical machine. IEEE Transactions on Industrial Electronics, 2012, 59(5): 2299–2308.

    Article  Google Scholar 

  11. Moradnia P., Golubev M., Chernoray V., Nilsson H., Flow of cooling air in an electric generator model-An experimental and numerical study. Applied Energy, 2014, 114: 644–653.

    Article  Google Scholar 

  12. Moradnia P., Chernoray V., Nilsson H., Experimental assessment of a fully predictive CFD approach, for flow of cooling air in an electric generator. Applied Energy, 2014, 124: 223–230.

    Article  Google Scholar 

  13. Schrittwieser M., Marn A., Farnleitner E., Kastner G., Numerical analysis of heat transfer and flow of stator duct models. IEEE Transactions on Industry Applications, 2014, 50(1): 226–233.

    Article  Google Scholar 

  14. Jamshidi H., Nilsson H., Chernoray V., CFD-based design and analysis of the ventilation of an electric generator model, validated with experiments. International Journal of Fluid Machinery and Systems, 2015, 8(2): 113–123.

    Article  Google Scholar 

  15. Shanel M., Pickering S.J., Lampard D., Conjugate heat transfer analysis of a salient pole rotor in an air cooled synchronous generator. IEMDC/IEEE International Electric Machines and Drives Conference, 2003, 2: 737–741.

    Article  Google Scholar 

  16. Weili L., Chunwei G., Yuhong C., Influence of rotation on rotor fluid and temperature distribution in a large air-cooled hydrogenerator. IEEE Transactions on Energy Conversion, 2013, 28(1): 117–124.

    Article  ADS  Google Scholar 

  17. Klomberg S., Farnleitner E., Kastner G., Bíró O., Validation of a heat transfer model for end winding bars of large hydro generators. COMPEL-International Journal for Computation and Mathematics in Electrical and Electronic Engineering, 2015, 34(5): 1589–1597.

    Article  Google Scholar 

  18. Klomberg S., Farnleitner E., Kastner G., Bíró O., Characteristics of the convective heat transfer coefficient at the end winding of a hydro generator. Journal of Thermal Science and Engineering Applications, 2015, 7(1): 011011.

    Article  Google Scholar 

  19. Lancial N., Torriano F., Beaubert F., Harmand S., Rolland G., Taylor-Couette-Poiseuille flow and heat transfer in an annular channel with a slotted rotor. International Journal of Thermal Sciences, 2017, 112: 92–103.

    Article  Google Scholar 

  20. Dang D.-D., Pham X.-T., Labbe P., Torriano F., Morissette J.-F., Hudon C., CFD analysis of turbulent convective heat transfer in a hydro-generator rotor-stator system. Applied Thermal Engineering, 2017, 130: 17–28.

    Article  Google Scholar 

  21. Torriano F., Lancial N., Lévesque M., Rolland G, Hudon C., Beaubert F., Morissette J.-F., Harmand S., Heat transfer coefficient distribution on the pole face of a hydrogenerator scale model. Applied Thermal Engineering, 2014, 70: 153–162.

    Article  Google Scholar 

  22. Bach E., Mydlarski L., Torriano F., Charest-Fournier J.-P., Sirois H., Morissette J.-F., Hudon C., PIV characterization of the air flow in a scale model of a hydrogenerator. ASME Power Conference, 2015, p. V001T12A003.

    Book  Google Scholar 

  23. Venne K., Design of an anemometer to characterize the flow in the rotor rim ducts of a hydroelectric generator. The McGill University, Montreal, Canada, 2017.

    Google Scholar 

  24. ANSYS, ANSYS CFX solver theory guide 16.0. ANSYS Inc., 2015.

  25. Schneider G.E., Raw M.J., Control volume finiteelement method for heat transfer and fluid flow using colocated variables-1. Computational procedure. Numerical Heat Transfer, 1987, 11(4): 363–390.

    Article  ADS  Google Scholar 

  26. Jones W.P., Launder B.E., The calculation of low-Reynolds-number phenomena with a two-equation model of turbulence. International Journal of Heat and Mass Transfer, 1973, 16(6): 1119–1130.

    Article  Google Scholar 

  27. Menter F.R., Two-equation eddy-viscosity turbulence models for engineering applications. AIAA Journal, 1994, 32(8): 1598–1605.

    Article  ADS  Google Scholar 

  28. Celik I.B., Ghia U., Roache P.J., Freitas C.J., Coleman H., Raad P.E., Procedure for estimation and reporting of uncertainty due to discretization in CFD applications. Journal of Fluids Engineering, Transactions of the ASME, 2008, 130(7): 078001.

    Article  Google Scholar 

  29. ASME V&V 20–2009-Standard for verification and validation in computational fluid dynamics and heat transfer. The American Society of Mechanical Engineers, 2009.

  30. Galpin P., Broberg R., Hutchinson B.R., Threedimensional Navier-Stokes predictions of steady state rotor-stator interaction with pitch change. 3rd Annual Conference of the CFD Society of Canada, Banff, Canada, 1995.

    Google Scholar 

  31. Bourgeois J.A., Martinuzzi R.J., Savory E., Zhang C., Roberts D.A., Assessment of turbulence model predictions for an aero-engine centrifugal compressor. Journal of Turbomachinery, 2011, 133(1): 011025.

    Article  Google Scholar 

  32. Iaccarino G., Ooi A., Durbin P.A., Behnia M., Conjugate heat transfer predictions in two-dimensional ribbed passages. International Journal of Heat and Fluid Flow, 2002, 23(3): 340–345.

    Article  Google Scholar 

  33. Coletti F., Scialanga M., Arts T., Experimental investigation of conjugate heat transfer in a ribroughened trailing edge channel with crossing jets. Journal of Turbomachinery, 2012, 134(4): 041016.

    Article  Google Scholar 

  34. Cukurel B., Arts T., Local heat transfer dependency on thermal boundary condition in ribbed cooling channel geometries. Journal of Heat Transfer, 2013, 135(10): 101001.

    Article  Google Scholar 

  35. Folting C., Jenau F., Implementation and analysis of multi-factor aging tests on the winding insulation of original sized generator stator bars used in large rotating machines. International Conference on High Voltage Engineering and Application, 2014, pp.: 1–4.

    Google Scholar 

Download references

Acknowledgment

The authors would like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) and Fonds de recherche du Quebec - Nature et Technologies (FRQNT) for their financial support of this work. We also wish to thank the Hydro-Quebec Research Institute (IREQ) for the funding, computing resource, software license, and results.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Dong Dang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, DD., Pham, XT. & Nguyen, CC. Thermal Performance Prediction in the Air Gap of a Rotor-Stator Configuration: Effects of Numerical Models. J. Therm. Sci. 29, 206–218 (2020). https://doi.org/10.1007/s11630-019-1096-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-019-1096-6

Keywords

Navigation