Skip to main content
Log in

Design and Development of a Lens-walled Compound Parabolic Concentrator-A Review

  • Published:
Journal of Thermal Science Aims and scope Submit manuscript

Abstract

Compound parabolic concentrator (CPC) is a representative among solar concentrators, one of whose disadvantage is that the concentration ratio limits the half acceptance angle. Based on this, researchers put forward a novel structure, named the lens-walled CPC. This paper reviews the design and development of lens-walled CPC. The structure of the symmetric and asymmetric lens-walled CPC and the improved ones are presented, and their indoor and outdoor performances are also illustrated. The lens-walled CPC has a larger half acceptance angle and a more uniform flux distribution that is suitable for PV application. Furthermore, the life-cycle assessment for building integrated with PV is performed and it shows that the energy payback time of such integrated system has a significant advantage. In addition, future research areas are also indicated that may provide more functions and more stable performance. The design methods and developmental directions given in this study would provide many references in solar optical research and solar concentrator optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pei G., Li G., Su Y., Ji J., Riffat S., Zheng H., Preliminary ray tracing and experimental study on the effect of mirror coating on the optical efficiency of a solid dielectric compound parabolic concentrator. Energies, 2012, 5 (9): 3627–3639.

    Article  Google Scholar 

  2. Pei G., Li G., Zhou X., Ji J., Su Y., Experimental study and exergetic analysis of a CPC-type solar water heater system using higher-temperature circulation in winter. Solar Energy, 2012, 86 (5): 1280–1286.

    Article  ADS  Google Scholar 

  3. Winston R., Miñano J.C., Benítez P., Nonimaging optics, Academic Press, Burlington, 2005.

    MATH  Google Scholar 

  4. Winston R., Dielectric compound parabolic concentrators. Applied Optics, 1976, 15(2): 291–292.

    Article  ADS  Google Scholar 

  5. Arnaoutakis G.E., Marques-Hueso J., Ivaturi A., Fischer S., Goldschmidt J.C., Krämer K.W., Richards B.S., Enhanced energy conversion of up-conversion solar cells by the integration of compound parabolic concentrating optics. Solar Energy Material Solar Cells, 2015, 140: 217–223.

    Article  Google Scholar 

  6. Yu X., Su Y., A discussion of inner south projection angle for performance analysis of dielectric compound parabolic concentrator. Solar Energy, 2015, 113: 101–113.

    Article  ADS  Google Scholar 

  7. Baig H., Sellami N., Chemisana D., Rosell J., Mallick T.K., Performance analysis of a dielectric based 3D building integrated concentrating photovoltaic system. Solar Energy, 2014, 103: 525–540.

    Article  ADS  Google Scholar 

  8. Baig H., Sellami N., Mallick T.P., Trapping light escaping from the edges of the optical element in a concentrating photovoltaic system. Energy Conversion Management, 2015, 90: 238–246.

    Article  Google Scholar 

  9. Sarmah N., Mallick T.K., Design, fabrication and outdoor performance analysis of a low concentrating photovoltaic system. Solar Energy, 2015, 112: 361–372.

    Article  ADS  Google Scholar 

  10. Zacharopoulos A., Eames P.C., McLarnon D., Norton B., Linear dielectric non-imaging concentrating covers for PV integrated building facades. Solar Energy, 2000; 68: 439–452.

    Article  ADS  Google Scholar 

  11. Yu X., Su Y., Zheng H., Riffat S., A study on use of miniature dielectric compound parabolic concentrator (dCPC) for daylighting control application. Building and Environment, 2014, 74: 75–85.

    Article  Google Scholar 

  12. Baig H., Heasman K., Mallick T.K., Non-uniform illumination in concentrating solar cells. Renewable & Sustainable Energy Reviews, 2012, 16: 5890–5909.

    Article  Google Scholar 

  13. Gupta D., Barink M., Langelaar M., CPV solar cell modeling and metallization optimization. Solar Energy, 2018, 159: 868–881.

    Article  ADS  Google Scholar 

  14. Richard O., Aimez V., Arès R., Fafard S., Jaouad A., Simulation of through-cell vias contacts under non-uniform concentrated light profiles. Solar Energy Materials and Solar Cells, 2018, 188: 241–248.

    Article  Google Scholar 

  15. Li G., Pei G., Su Y., Wang Y., Yu X., Ji J., Zheng H., Improving angular acceptance of stationary lowconcentration photovoltaic compound parabolic concentrators using acrylic lens-walled structure. Journal of Renewable and Sustainable Energy, 2014, 6 (1): 013122.

    Article  Google Scholar 

  16. Su Y., Pei G., Riffat S.B., Huang H., A novel Lens-walled compound parabolic concentrator for Photovoltaic applications. Journal of Solar Energy Engineering, 2012, 134 (2): 021010.

    Article  Google Scholar 

  17. Li G., Pei G., Su Y., Ji J., Riffat S., Experiment and simulation study on the flux distribution of lens-walled compound parabolic concentrator compared with mirror compound parabolic concentrator. Energy, 2013, 58: 398–403.

    Article  Google Scholar 

  18. Li G., Pei G., Su Y., Wang Y., Ji J., Design and investigation of a novel lens-walled compound parabolic concentrator with air gap. Applied Energy, 2014, 125: 21–27.

    Article  Google Scholar 

  19. Li G., Pei G., Ji J., Su Y., Zhou H., Cai J., Structure optimization and annual performance analysis of the lenswalled compound parabolic concentrator. International Journal of Green Energy, 2016, 13 (9): 944–950.

    Article  Google Scholar 

  20. Xuan Q., Li G., Pei G., Su Y., Ji J., Design and Optical Evaluation of a Novel Asymmetric Lens-Walled Compound Parabolic Concentrator (ALCPC) Integration with Building South Wall. Journal of Daylighting, 2017, 4 (2): 26–36.

    Article  Google Scholar 

  21. Xuan Q., Li G., Pei G., Ji J., Su Y., Zhao B., Optimization design and performance analysis of a novel asymmetric compound parabolic concentrator with rotation angle for building application. Solar Energy, 2017, 158: 808–818.

    Article  ADS  Google Scholar 

  22. Li G., Su Y., Pei G., Yu X., Ji J., Riffat S., Preliminary experimental comparison of the performance of a novel lens-walled compound parabolic concentrator (CPC) with the conventional mirror and solid CPCs. International Journal of Green Energy, 2013, 10 (8): 848–859.

    Article  Google Scholar 

  23. Li G., Su Y., Pei G., Zhou H., Yu X., Ji J., Riffat S., An Outdoor Experiment of a Lens-Walled Compound Parabolic Concentrator Photovoltaic Module on a Sunny Day in Nottingham. Journal of Solar Energy Engineering, 2014, 136 (2): 021011.

    Article  Google Scholar 

  24. Li G., Xuan Q., Pei G., Su Y., Ji J., Effect of non-uniform illumination and temperature distribution on concentrating solar cell-A review. Energy, 2018, 144: 1119–1136.

    Article  Google Scholar 

  25. Li G., Pei G., Yang M., Ji J., Su Y., Optical evaluation of a novel static incorporated compound parabolic concentrator with photovoltaic/thermal system and preliminary experiment. Energy Conversion and Management, 2014, 85: 204–211.

    Article  Google Scholar 

  26. Li G., Pei G., Ji J., Su Y., Outdoor overall performance of a novel air gap lens-walled compound parabolic concentrator (ALCPC) incorporated with photovoltaic/thermal system. Applied Energy, 2015, 144: 214–223.

    Article  Google Scholar 

  27. Mammo E.D., Sellami N., Mallick T.K., Performance analysis of a reflective 3D crossed compound parabolic concentrating photovoltaic system for building façade integration. Progress in Photovoltaics: Research and Applications, 2012, 21: 1095–1103.

    Google Scholar 

  28. Abu-Bakar S.H., Muhammad-Sukki F., Freier D., Ramirez-Iniguez R., Mallick T.K., Munir A.B., Yasini S.H.M., Mas’ud A.A., Yunus N.M., Performance analysis of a novel rotationally asymmetrical compound parabolic concentrator. Applied Energy, 2015, 154: 221–231.

    Article  Google Scholar 

  29. Li G., Xuan Q., Lu Y., Pei G., Su Y., Ji J., Numerical and lab experiment study of a novel concentrating PV with uniform flux distribution. Solar Energy Materials and Solar Cells, 2018, 179: 1–9.

    Article  Google Scholar 

  30. Li G., Pei G., Ji J., Yang M., Su Y., Xu N., Numerical and experimental study on a PV/T system with static miniature solar concentrator. Solar Energy, 2015, 120: 565–574.

    Article  ADS  Google Scholar 

  31. 2020 CPV Market (Concentrated Photovoltaic) Size, Country Analysis and Forecast. https://www.marketwatch.com/press-release/2020-cpv-market-concentrated-photovoltaic-size-country-analysis-and-forecasts-2016-04-22 (accessed on 10 September 2018).

  32. Abu-Bakar S.H., Muhammad-Sukki F., Ramirez-Iniguez R., Mallick T.K., Munir A.B., Yasin S.H.M., Abdul Rahim R., Rotationally asymmetrical compound parabolic concentrator for concentrating photovoltaic applications. Applied Energy, 2014, 136: 363–372.

    Article  Google Scholar 

  33. Rajendran D.R., Sundaram E.G., Jawahar P., Experimental studies on the thermal performance of a parabolic dish solar receiver with the heat transfer fluids SiC plus water nano fluid and water. Journal of Thermal Science, 2017, 26(3): 263–272.

    Article  ADS  Google Scholar 

  34. Crisostomo F., Hjerrild N., Mesgari S., Li Q., Taylor R.A., A hybrid PV/T collector using spectrally selective absorbing nanofluids. Applied Energ, 2017, 193: 1–14.

    Article  Google Scholar 

  35. Mallick T.K., Eames P., Design and fabrication of low concentrating second generation PRIDE concentrator. Solar Energy Mater Solar Cells, 2007, 91: 597–608.

    Article  Google Scholar 

  36. Fava J., Baer S., Cooper J., Increasing demands for life cycle assessments in North America. Journal of Industrial Ecology, 2009, 13: 491–494.

    Article  Google Scholar 

  37. Ortiz O., Castells F., Sonnemann G., Sustainability in the construction industry: A review of recent developments based on LCA. Construction Building Materials, 2009, 23: 28–39.

    Article  Google Scholar 

  38. Lu L., Yang H.X., Environmental payback time analysis of a roof-mounted building-integrated photovoltaic (BIPV) system in Hong Kong. Applied Energy, 2010, 87: 3625–3631.

    Article  Google Scholar 

  39. Houa G., Sun H., Jiang Z., Pan Z., Wang Y., Zhang X., Zhao Y., Yao Q., Life cycle assessment of grid-connected photovoltaic power generation from crystalline silicon solar modules in China. Applied Energy, 2016, 164: 882–890.

    Article  Google Scholar 

  40. Li G., Xuan Q., Pei G., Su Y., Lu Y., Ji J., Life-cycle assessment of a low-concentration PV module for building south wall integration in China. Applied Energy, 2018, 215: 174–185.

    Article  Google Scholar 

  41. Li G., Xuan Q., Zhao X., Pei G., Ji J., Su Y., A Novel Concentrating Photovoltaic/Daylighting Control System: Optical Simulation and Preliminary Experimental Analysis. Applied Energy, 2018, 228: 1362–1372.

    Article  Google Scholar 

  42. Liu L., Jia Y., Lin Y., Alva G., Fang G., Numerical study of a novel miniature compound parabolic concentrating photovoltaic/thermal collector with microencapsulated phase change slurry. Energy Conversion and Management, 2017, 153: 106–114.

    Article  Google Scholar 

Download references

Acknowledgment

The study was sponsored by the Project of EU Marie Curie International Incoming Fellowships Program (745614), the National Science Foundation of China (Grant Nos. 51408578, 51476159, 51611130195), and Anhui Provincial Natural Science Foundation (1508085QE96).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guiqiang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G. Design and Development of a Lens-walled Compound Parabolic Concentrator-A Review. J. Therm. Sci. 28, 17–29 (2019). https://doi.org/10.1007/s11630-019-1083-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11630-019-1083-3

Keywords

Navigation