Skip to main content
Log in

Landsat based distribution mapping of high-altitude peatlands in Hindu Kush Himalayas — a case study of Broghil Valley, Pakistan

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

In the alpine regions of Hindu Kush, Himalayas and Karakorum, climatic and topographic conditions can support the formation of peat, important for the livelihood of the local communities, and ecological services alike. These peatlands are a source of fuel for the local community, habitat for nesting birds, and water regulation at source for rivers. Ground-based surveys of high-altitude peatlands are not only difficult, but also expensive and time consuming. Therefore, a method using cost-effective remote sensing technology is required. In this article we assessed the distribution and extent of high-altitude peatlands in a 2000 ha area of Broghil Valley using Landsat 8 data. The composite image was trained using a priori knowledge of the area, and classified into peatland and non-peatland land covers using a supervised decision tree algorithm. The Landsat-based classification map was compared with field data collected with a differential GPS. This comparison suggests 82% overall accuracy, which is fairly high for high altitude areas. The method was successfully applied and has the potential to be replicated for other areas in Pakistan and the high-altitude regions of the neighbouring Asian countries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Arvidson T, Gasch J, Goward SN (2001) Landsat 7’s long-term acquisition plan — an innovative approach to building a global imagery archive. Remote Sensing of Environment 78: 13–26. https://doi.org/10.1016/S0034-4257(01)00263-2

    Article  Google Scholar 

  • Bond P, Campbell KM, Scott TM (1986) An overview of peat in Florida and related issues. State of Florida, Department of Natural Resource Management and Bureau of Geology; Special Publication No. 27: 151.

  • Biancalani R, Avagyan A (2014) Towards climate-responsible peatlands management. Food and Agriculture Organization of the United Nations. p 100.

  • Breiman L (1996) Bagging predictors. Machine Learning 24: 123–140

    Google Scholar 

  • Breiman L, Friedman JH, Olshen RA, Stone CJ (1984) Classification and Regression Trees. Chapman and Hall/CRC, Boca Raton, FL. p 368.

    Google Scholar 

  • Bwangoy J-RB, Hansen MC, Potapov P, et al. (2013) Identifying nascent wetland forest conversion in the Democratic Republic of the Congo. Wetlands Ecology and Management 21(1): 29–43. https://doi.org/10.1007/s11273-012-9277-z.

    Article  Google Scholar 

  • Chander G, Markham BL, Helder DL (2009) Summary of current radiometric calibration coefficients for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sensing of Environment 113: 893–903. https://doi.org/10.1016/j.rse.2009.01.007

    Article  Google Scholar 

  • Christopherson RW (2000) Geosystems: An Introduction to Physical Geography. 4th Edition, Prentice-Hall, Inc., Canada. p 626.

    Google Scholar 

  • Cihlar J (2000) Land cover mapping of large areas from satellites: status and research priorities. International Journal of Remote Sensing 21(6–7): 1093–1114. https://doi.org/10.1080/014311600210092

    Article  Google Scholar 

  • Clark D (2008) The origins and development of peat industry in Ireland. Peatlands International 1: 12–15.

    Google Scholar 

  • Cooper DJ, Wolf EC, Colson C, et al. (2018) Alpine peatlands of the Andes, Cajamarca, Peru. Arctic, Antarctic and Alpine Research 42(01): 19–33. https://doi.org/10.1657/1938-4246-42.1.19

    Article  Google Scholar 

  • Dijk AV, Hussein MH (1994). Environmental profile of North-West Frontier Province Pakistan. The Netherlands Ministry of Foreign Affairs and IUCN Pakistan, Islamabad.

    Google Scholar 

  • Frisch W, Mesched M, Blakey T (2011) Plate Tectonics: Continental Drift and Mountain Building. Heidelberg: Springer Berlin Heidelberg. p 207.

    Book  Google Scholar 

  • Gary MR, McAfee Jr, Wolf CL (eds.) (1974) Glossary of Geology. American Geological Institute, Alexandria, VA. p 805.

    Google Scholar 

  • Hansen MC, Loveland TR (2012) A review of large area monitoring of land cover change using Landsat data. Remote Sensing of Environment 122: 66–74. https://doi.org/10.1016/j.rse.2011.08.024

    Article  Google Scholar 

  • Hansen MC, Dubayah R, DeFries R (1996) Classification trees: An alternative to traditional land cover classifiers. International Journal of Remote Sensing 17(5): 1075–1081

    Article  Google Scholar 

  • Hreibljan JA, Cooper DJ, Sueltenfuss J, et al. (2015) Carbon storage and long-term rate of accumulation in high-altitude Andean peatlands of Bolivia. Mires and Peat 15: 1–14.

    Google Scholar 

  • Ives JD, Messerli B (1989) The Himalayan Dilemma: Reconciling development and conservation. Routledge, New York. p 324.

    Google Scholar 

  • Joosten H, Tapio-Bistrom M, Tol S (2012) peatlands — guidance for climate change mitigation through conservation, rehabilitation and sustainable use (2nd ed.). Food and Agriculture Organization of the United Nations. p100.

  • Khan A, Said A (2012) Wetlands Management Plan for Broghil National Park. Pakistan Wetlands Program, Islamabad. p 68.

    Google Scholar 

  • Khan A, Hansen CM, Potapov P, et al. (2016) Landsat-based wheat mapping in the heterogeneous cropping system of Punjab, Pakistan. International Journal of Remote Sensing 37: 1391–1410. https://doi.org/10.1080/01431161.2016.1151572

    Article  Google Scholar 

  • Khan A, Said A, Hamid A (2010) Socio-economic profile of selected communities in the CIWC and NAWC Pakistan. Pakistan Wetlands Program and GE4DE, ILO, Islamabad.

    Google Scholar 

  • Kumaran NK, Padmalal D, Limaye RB, et al. (2016) Tropical Peat and Peatland Development in the Floodplains of the Greater Pamba Basin, South-Western India during the Holocene. PLoS ONE 11(5): 1–21. https://doi.org/10.1371/journal.pone.0154297

    Article  Google Scholar 

  • Lafleur PM, Moore TR, Roulet NT, Frokling S (2005) Ecosystem respiration in a cool temperate bog depends on peat temperature but not water table. Ecosystems: 619–629.

  • Laiho R (2006) Decomposition in peatlands: Reconciling seemingly contrasting results on the impacts of lowered water levels. Soil Biology & Biochemistry 38: 2011–2024. https://doi.org/10.1016/j.soilbio.2006.02.017

    Article  Google Scholar 

  • Ning W (2012) Conservation of High Altitude Peatlands in the Greater Himalayas. In, Conference presentation at Ramsar COP 11 (p.11). Bucharest, July 10, 2012,: Ramsar Secretariate. Avialable online at: http://south-asia.wetlands.org/Portals/0/publications/Presentations/06-Wu_Peatl_Himalayas_ramsar_COP11.pdf.

  • Parish F, Sirin A, Charman D, et al. (2008) Assessment on peatlands, biodiversity and climate change. Global Environment Center, Kuala Lumpur and Wetlands International, Wageningen. p 179.

    Google Scholar 

  • Potapov PV, Turubanova SA, Hansen MC, et al. (2012) Quantifying Forest cover loss in Democratic Republic of the Congo 2000–2010 with Landsat ETM Plus data. Remote Sensing of Environment 122: 106–116. https://doi.org/10.1016/j.rse.2011.08.027.

    Article  Google Scholar 

  • Prest VK (1970) Quaternary Geology of Canada. In: Douglas RJW (ed.), Geology and Economic Minerals of Canada, Geological Survey of Canada. pp 675–764.

  • Rafae U (2015) An overview of Broghil Valley CCA Project Jurisdiction. In: IADC Inc presentation online at: https://issuu.com/iadcinc/docs/broghill_valley_chitral_pakistan_pr

  • Ranhotra PS and Kar R (2011) Palynological study of glacio-geomorphic features and its relevance to Quaternary palaeoclimate and glacial history. Current Science 100(5): 641–647.

    Google Scholar 

  • Ripley BD (1996) Pattern Recognition and Neural Networlds. Cambridge University Press: New York, NY, USA.

    Book  Google Scholar 

  • Shah KA, Ahmad H (2013) Peatlands of Broghil national park, Pakistan: human use and management strategy. In: Ning W, et al. (eds.), High-Altitude Rangelands and their Interfaces in the Hindu Kush Himalayas. Special Publication, Kathmandu, Nepal: International Center for Integrated Mountain Development (ICIMOD). pp 137–145.

    Google Scholar 

  • Shrestha DP, Zinck JA (2001) Land use classification in mountainous areas: integration of image processing, digital elevation data and field knowledge (application to Nepal). International Journal of Applied Earth Observation and Geoinformation 3: 78–85.

    Article  Google Scholar 

  • Stehman SV, Czaplewski RL (1998) Design and analysis for thematic map accuracy assessment: Fundamental principles. Remote Sensing of Environment 64: 331–344. https://doi.org/10.1016/s0034-4257(98)00010-8

    Article  Google Scholar 

  • Tarnocai C, Stolbovoy V (2006) Northern Peatlands: their characteristics, development and sensitivity to climate change. In: Martini IP, Cortizas A, Chesworth M (eds.) Peatlands: Evolution and Records of Environmental and Climate Changes. Elsevier, Amsterdam. pp 17–51.

    Chapter  Google Scholar 

  • Tokola T, Lofman S, Erkkila A (1999) Relative calibration of multitemporal landsat data for forest cover change detection: Remote Sensing of Environment 68: 1–11. https://doi.org/10.1016/s0034-4257(98)00096-0

    Article  Google Scholar 

  • Ullah I, Khan A (2010) Organic matter contents in selected peatland and wetlands of Pakistan. The role of water level. BALWOIS: 1–10

  • UNDP Pakistan (2002) Indus dolphin. Documentary by UNDP Pakistan, Islamabad and WWF Pakistan. U.S. Department of Energy 1979 Peat-Prospectus: United States Department of Energy, Division of Fossil Fuel Processing, Washington D.C. p 79.

  • Xie YC, Sha ZY, Yu M (2008) Remote sensing imagery in vegetation mapping: a review. Journal of Plant Ecology 1: 9–23.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Khan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, A., Said, A. & Ullah, I. Landsat based distribution mapping of high-altitude peatlands in Hindu Kush Himalayas — a case study of Broghil Valley, Pakistan. J. Mt. Sci. 17, 42–49 (2020). https://doi.org/10.1007/s11629-019-5384-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-019-5384-0

Keywords

Navigation