Skip to main content
Log in

Seasonal variations of organic carbon and nitrogen in the upper basins of Yangtze and Yellow Rivers

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

The profound impacts exerted by climate warming on the Tibetan Plateau have been documented extensively, but the biogeochemical responses remain poorly understood. This study was aimed at seasonal variations of total organic carbon (TOC) and total organic nitrogen (TON) in stream water at two gauging sections (TTH, ZMD) in the upper basin of Yangtze River (UBYA) and at four gauging sections (HHY, JM, JG, TNH) in the upper basin of Yellow River (UBYE) in 2013. Results showed that concentrations of TON exhibit higher values in spring and winter and lower values in summer. TOC exhibits higher concentrations in spring or early summer and lower concentrations in autumn or winter. Seasonal variations of TOC and TON fluxes are dominated by water flux. In total, the UBYE and UBYA delivers 55,435 tons C of organic carbon and 9,872 tons N of organic nitrogen to downstream ecosystems in 2013. Although the combined flux of TOC from UBYA and UBYE is far lower than those from large rivers, their combined yields is higher than, or comparable with, those from some large rivers (e.g. Nile, Orange, Columbia), implying that organic carbon from the Tibetan Plateau may exert a potentially influence on regional and/or global carbon cycles in future warming climate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrahan M, Alain L, Patricia MT, et al. (2014) Temporal variation and fluxes of dissolved and particulate organic carbon in the Apure, Caura and Orinoco rivers, Venezuela. Journal of South American Earth Sciences 54(10): 47–56. DOI: 10.1016/j.jsames.2014.04.010

    Google Scholar 

  • Accardi-Dey A, Gschwend PM. (2002) Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments. Environmental Science and Technology 36(1): 21–29. DOI: 10.1021/es010953c

    Article  Google Scholar 

  • Aitkenhead JA, McDowell WH, Neff JC (2003) Sources, production, and regulation of allochthonous dissolved organic matter inputs to surface waters, in: Aquatic Ecosystems: Interactivity of Dissolved Organic Matter, edited by: Findlay, S. E. G. and Sinsabaugh, R. L., Academic Press, San Diego. pp 25–70.

    Chapter  Google Scholar 

  • Alling V, Sanchez-Garcia L, Porcelli D, et al. (2010) Nonconservative behavior of dissolved organic carbon across the Laptev and East Siberian seas. Global Biogeochemical Cycles 24(4): GB4033. DOI: 10.1029/2010GB003834

    Google Scholar 

  • Amon RMW, Benner R (1996) Photochemical and microbial consumption of dissolved organic carbon and dissolved oxygen in the Amazon River system. Geochimica et Cosmochimica Acta 60(10): 1783–1792. DOI: 10.1016/0016-7037(96)00055-5

    Article  Google Scholar 

  • Brakke DF, Henriksen A, Norton SA (1987) The relative importance of acidity sources for humic lakes in Norway. Nature 329(6138): 432–434. DOI: 10.1038/329432a0

    Article  Google Scholar 

  • Cauwet G, Mackenzie FT (1993) Carbon inputs and distribution in estuaries of turbid rivers: The Yangtze and Yellow Rivers (China). Marine Chemistry 43(1–4): 235–246. DOI: 10.1016/0304-4203(93)90229-H

    Article  Google Scholar 

  • Chen SJ, Luo XJ, Mai BX, et al. (2006) Distribution and mass inventories of polycyclic aromatic hydrocarbons and organochlorine pesticides in sediments of the Pearl River Estuary and the northern South China Sea. Environmental Science and Technology 40(3): 709–714. DOI: 10.1021/es052060g

    Article  Google Scholar 

  • Dai M, Yin Z, Meng F, et al. (2012) Spatial distribution of riverine DOC inputs to the ocean: an updated global synthesis. Current Opinion in Environmental Sustainability 4(2): 170–178. DOI: 10.1016/j.cosust.2012.03.003

    Article  Google Scholar 

  • Dai MH, Martin JM (1995) First data on trace metal level and behaviour in two major Arctic river-estuarine systems (Ob and Yenisey) and in the adjacent Kara Sea, Russia. Earth and Planetary Science Letter 131(3): 127–141.

    Article  Google Scholar 

  • Freeman C, Evans CD, Monteith DT, et al. (2001) Export of organic carbon from peat soils. Nature 412(6849): 785. DOI: 10.1038/35090628

    Article  Google Scholar 

  • Gao L, Li D, Zhang Y (2012) Nutrients and particulate organic matter discharged by the Changjiang (Yangtze River): Seasonal variations and temporal trends. Journal of Geophysical Research-Biogeosciences 117(G4): G04001. DOI: 10.1029/2012JG001952

    Google Scholar 

  • Giesler R, Lyon SW, Mörth CM, et al. (2014) Catchment-scale dissolved carbon concentrations and export estimates across six subarctic streams in northern Sweden. Biogeosciences 11(2): 525–537. DOI: 10.5194/bg-11-525-2014

    Article  Google Scholar 

  • Hagedorn F, Schleppi P, Waldner P, et al. (2000) Export of dissolved organic carbon/nitrogen from Gleysol dominated catchments-the significance of water flow paths. Biogeochemistry 50(2): 137–161. DOI: 10.1023/A:10063 9810 5953

    Article  Google Scholar 

  • Hillebrand H, Sommer U (1999) The nutrient stoichiometry of benthic microalgal growth: Redfield proportions are optimal. Limnology and Oceanography 44(2): 440–446. DOI: 10.4319/lo.1999. 4.2.0440

    Article  Google Scholar 

  • Holmes RM, McClelland JW, Peterson BJ, et al. (2012) Seasonal and annual fluxes of nutrients and organic matter from large rivers to the Arctic Ocean and surrounding seas. Estuaries and Coasts 35(2): 369–382. DOI: 10.1007/s12237-011-9386-6

    Article  Google Scholar 

  • Hope D, Billett MF, Cresser MS (1994) A review of the export of carbon in river water: fluxes and processes. Environmental Pollution 84(3):301–324.DOI:10.1016/0269-7491(94)90142-2

    Article  Google Scholar 

  • Jansson M, Bergstrom AK, Blomqvist P, et al. (2000) Allochthonous organic carbon and phytoplankton/bacterioplankton production relationships in lakes. Ecology 81(11): 3250–3255. DOI: 10.1890/0012-9658 (2000)081[3250: AOCAPB]2.0.CO;2

    Article  Google Scholar 

  • Jin H, He R, Cheng G, et al. (2009) Changes in frozen ground in the Source Area of the Yellow River on the Qinghai-Tibet Plateau, China, and their eco-environmental impacts. Environmental Research Letters 4(4): 1–11. DOI: 10.1088/1748-9326/4/4/045206

    Article  Google Scholar 

  • Kane DL, Hinzman LD, Benson CS, et al. (1989) Hydrology of Imnavait Creek, an Arctic watershed. Ecography 12(3): 262–269. DOI: 10.1111/j.1600-0587.1989.tb00845.x

    Article  Google Scholar 

  • Kang S, Wang F, Morgenstern U, et al. (2015) Dramatic loss of glacier accumulation area on the Tibetan Plateau revealed by ice core tritium and mercury records. The Cryosphere 9(3): 1213–1222. DOI: 10.5194/tc-9-1213-2015

    Article  Google Scholar 

  • Köhler SJ, Buffam I, Laudon H, et al. (2008) Climate’s control of intra-annual and interannual variability of total organic carbon concentration and flux in two contrasting boreal landscape elements. Journal of Geophysical Research-Biogeosciences 113(G3): G03012. DOI: 10.1029/2007JG000629

    Article  Google Scholar 

  • Köhler SJ, Buffam I, Seibert J, et al. (2009) Dynamics of stream water TOC concentrations in a boreal headwater catchment: Controlling factors and implications for climate scenarios. Journal of Hydrology 373(1): 44–56. DOI: 10.1016/j.jhydrol. 2009.04.012

    Article  Google Scholar 

  • Kortelainen P, Rantakari M, Pajunen H, et al. (2013) Carbon evasion/accumulation ratio in boreal lakes is linked to nitrogen. Global Biogeochemical Cycles 27(2): 363–74. DOI: 10.1002/gbc.20036

    Article  Google Scholar 

  • Lan Y, Zhao G, Zhang Y, et al. (2010) Response of runoff in the source region of the Yellow River to climate warming. Quaternary International 226(1–2): 60–65. DOI: 10.1016/j.quaint.2010.03.006

    Article  Google Scholar 

  • Laudon H, Bishop K (2002) Episodic stream water decline during autumn storms following a summer drought. Hydrological Processes 16(9): 1725–1733. DOI: 10.1002/hyp.360

    Article  Google Scholar 

  • Laudon H, Köhler S, Buffam I (2004) Seasonal TOC export from seven boreal catchments in northern Sweden. Aquatic Sciences 66(2): 223–230. DOI: 10.1007/s00027-004-0700-2

    Article  Google Scholar 

  • Lepistö A, Futter MN, Kortelainen P (2014) Almost 50 years of monitoring shows that climate, not forestry, controls longterm organic carbon fluxes in a large boreal watershed. Global Change iology 20(4): 1225–1237. DOI: 10.1111/gcb.12491

    Article  Google Scholar 

  • Lepistö A, Kortelainen P, Mattsson T (2008) Increased organic C and N leaching in a northern boreal river basin in Finland. Global iogeochemical Cycles 22(30): GB3029. DOI: 10.1029/2007GB003175

    Google Scholar 

  • Liu S, Yao X, Guo W, et al. (2015) The contemporary glaciers in China based on the Second Chinese Glacier Inventory. Acta Geographica Sinica 70(1): 3–16. (In Chinese)

    Google Scholar 

  • Liu S, Zhang Y, Zhang Y, et al. (2009) Estimation of glacier runoff and future trends in the Yangtze River source region, China. Journal of Glaciology 55(190): 353–362. DOI: 10.3189/002214309788608778

    Article  Google Scholar 

  • Liu Y, Xu J, Kang S, et al. (2016) Storage of dissolved organic carbon in Chinese glaciers. Journal of Glaciology 62(232): 402–406. DOI: 10.1017/jog.2016.47

    Article  Google Scholar 

  • Lu X, Li S, He M, et al. (2012) Organic carbon fluxes from the upper Yangtze basin: an example of the Longchuanjiang River, China. Hydrological Processes 26(11): 1604–1616. DOI: 10.1002/hyp.8267

    Article  Google Scholar 

  • Ludwig W, Probst JL, Kempe S (1996) Predicting the oceanic input of organic carbon by continental erosion. Global Biogeochemical Cycles 10(1): 23–41. DOI: 10.1029/95GB 02925

    Article  Google Scholar 

  • Mattsson T, Kortelainen P, Räike A, et al. (2015) Spatial and temporal variability of organic C and N concentrations and export from 30 boreal rivers induced by land use and climate. Science of the Total Environment 508(5): 145–154. DOI: 10.1016/j.scitotenv.2014.11.091

    Article  Google Scholar 

  • McClelland JW, Townsend-Small A, Holmes RM, et al. (2014) River export of nutrients and organic matter from the North Slope of Alaska to the Beaufort Sea. Water Resources Research 50(2): 1823–1839. DOI: 10.1002/2013WR014722

    Article  Google Scholar 

  • Mora A, Laraque A, Moreira-Turcq P, et al. (2014) Temporal variation and fluxes of dissolved and particulate organic carbon in the Apure, Caura and Orinoco rivers, Venezuela. Journal of South American Earth Sciences 54(10): 47–56. DOI: 10.1016/j.jsames.2014.04.010

    Article  Google Scholar 

  • Moran MA, Sheldon WMJ, Sheldon JE (1999) Biodegradation of riverine dissolved organic carbon in five estuaries of the southeastern United States. Estuaries 22(1): 55–64. DOI: 10.2307/1352927

    Article  Google Scholar 

  • Petrone KC, Jones JB, Hinzman LD, et al. (2006) Seasonal export of carbon, nitrogen, and major solutes from Alaskan catchments with discontinuous permafrost. Journal of Geophysical Research-Biogeosciences 111(G2): G02020. DOI: 10.1029/2005JG000055

    Article  Google Scholar 

  • Ran L, Lu X, Sun H, et al. (2013) Spatial and seasonal variability of organic carbon transport in the Yellow River, China. Journal of Hydrology 498(498): 76–88. DOI: 10.1016/j.jhydrol. 2013.06.018

    Article  Google Scholar 

  • Raymond PA, Bauer JE (2000) Bacterial consumption of DOC during transport through a temperate estuary. Aquatic Microbial Ecology 22(1): 1–12. DOI: 10.3354/ame022001

    Article  Google Scholar 

  • Salimon C, dos Santos SE, Alin SR, et al. (2013) Seasonal variation in dissolved carbon concentrations and fluxes in the upper Purus River, southwestern Amazon. Biogeochemistry 114(1): 245–254. DOI: 10.1007/s10533-012-9806-0

    Article  Google Scholar 

  • Sarkkola S, Koivusalo H, Laurén A, et al. (2009) Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments. Science of the Total Environment 408(1): 92–101. DOI: 10.1016/j.scitotenv.x2009.09.008

    Article  Google Scholar 

  • Schuur EAG, McGuire AD, Schädell C, et al. (2015) Climate change and the permafrost carbon feedback. Nature 520(7546): 171–179. DOI: 10.1038/nature14338

    Article  Google Scholar 

  • Seitzinger SP, Sanders RW (1997) Contribution of dissolved organic nitrogen from rivers to estuarine eutrophication. Marine Ecology Progress Series 159: 1–12. DOI: 10.3354/meps159001

    Article  Google Scholar 

  • Singer GA, Fasching C, Wilhelm L, et al. (2012) Biogeochemically diverse organic matter in Alpine glaciers and its downstream fate. Nature Geoscience 5(5): 710–714. DOI: 10.1038/NGEO1581

    Article  Google Scholar 

  • Tipping E (1993) Modeling the competition between alkaline earth cations and trace-metal species for binding by humic substances. Environmental Science and Technology 27(3): 520–529. DOI: 10.1021/es00040a011

    Article  Google Scholar 

  • Wang X, Ma H, Li R, et al. (2012) Seasonal fluxes and source variation of organic carbon transported by two major Chinese Rivers: The Yellow River and Changjiang (Yangtze) River. Global Biogeochemical Cycles 26(2): GB2025. DOI: 10.1029/2011GB004130

    Article  Google Scholar 

  • Wu T, Zhao L, Li R, et al. (2013) Recent ground surface warming and its effects on permafrost on the central Qinghai-Tibet Plateau. International Journal of Climatology 33(4): 920–930. DOI: 10.1002/joc.3479

    Article  Google Scholar 

  • Wu Y, Zhang J, Liu S, et al. (2007) Sources and distribution of carbon within the Yangtze River system. Estuarine, Coastal and Shelf Science 71(1–2): 13–25. DOI: 10.1016/j.ecss.2006. 08.016

    Article  Google Scholar 

  • Yang Y, Wu Q, Yun H (2013) Stable isotope variations in the ground ice of Beiluhe Basin on the Qinghai-Tibet Plateau. Quaternary International 313-314(10): 85–91. DOI: 10.1016/j.quaint.2013.07.037

    Google Scholar 

  • Yu H, Wu Y, Zhang J, et al. (2011) Impact of extreme drought and the Three Gorges Dam on transport of particulate terrestrial organic carbon in the Changjiang (Yangtze) River. Journal of Geophysical Research-Earth Surface 116(F4): F04029. DOI: 10.1029/2011JF002012

    Article  Google Scholar 

  • Zhang L, Su F, Yang D, et al. (2013) Discharge regime and simulation for the upstream of major rivers over Tibetan Plateau. Journal of Geophysical Research-Atmospheres 118(15): 8500–8518. DOI: 10.1002/jgrd.50665

    Article  Google Scholar 

  • Zhang L, Xue M, Wang M, et al. (2014) The spatiotemporal distribution of dissolved inorganic and organic carbon in the main stem of the Changjiang (Yangtze) River and the effect of the Three Gorges Reservoir. Journal of Geophysical Research-Biogeosciences 119(5): 741–757. DOI: 10.1002/2012JG002230

    Article  Google Scholar 

  • Zhang S, Gan WB, Ittekkot V (1992) Organic matter in large turbid rivers: the Huanghe and its estuary. Marine Chemistry 38(1–2): 53–68. DOI: 10.1016/0304-4203(92)90067-K

    Article  Google Scholar 

Download references

Acknowledgement

This work was funded by the National Natural Science Foundation of China (91647102, 41671053, 41201060, 41271035, 41261017), Open Foundations of State Key Laboratory of Frozen Soil Engineering (SKLFSE201411), Open Foundation of the State Key Laboratory of Cryospheric Sciences (SKLCS-OP-2017-03), Fundamental Research Funds for the Central Universities (2014B16914), Special Fund of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (20145027312), Open Foundations of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (2015490111), Academy of Finland (Decision number 268170), Hundred Talents Program, Chinese Academy of Sciences Key Research Program (KZZD-EW-13), and the Fundamental Research Funds for the Central Universities (NO. B14020167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong-jian Ding.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xy., Ding, Yj., Han, Td. et al. Seasonal variations of organic carbon and nitrogen in the upper basins of Yangtze and Yellow Rivers. J. Mt. Sci. 14, 1577–1590 (2017). https://doi.org/10.1007/s11629-016-4354-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-4354-z

Keywords

Navigation