Skip to main content
Log in

Vegetation-based bioindication of humus forms in coniferous mountain forests

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Humus forms, especially the occurrence and the thickness of the horizon of humified residues (OH), provide valuable information on site conditions. In mountain forest soils, humus forms show a high spatial variability and data on their spatial patterns is often scarce. Our aim was to test the applicability of various vegetation features as proxy for OH thickness. Subalpine coniferous forests dominated by Picea abies (L.) H. Karst. and Larix decidua Mill. were studied in the Province of Trento, Italian Alps, between ca. 900 and 2200 m a.s.l. Braun-Blanquet vegetation relevés and OH thickness were recorded at 152 plots. The vegetation parameters, tested for their suitability as indicators of OH thickness, encompassed mean Landolt indicator values of the herb layer (both unweighted and cover-weighted means) as well as parameters of vegetation structure (cover values of plant species groups) calculated from the relevés. To our knowledge, the predictive power of Landolt indicator values (LIVs) for humus forms had not been tested before. Correlations between OH thickness and mean LIVs were strongest for the soil reaction value, but indicator values for humus, nutrients, temperature and light were also significantly correlated with OH thickness. Generally, weighting with species cover reduced the indicator quality of mean LIVs for OH thickness. The strongest relationships between OH thickness and vegetation structure existed in the following indicators: the cover of forbs (excluding graminoids and ferns) and the cover of Ericaceae in the herb layer. Regression models predicting OH thickness based on vegetation structure had almost as much predictive power as models based on LIVs. We conclude that LIVs analysis can produce fairly reliable information regarding the thickness of the OH horizon and, thus, the humus form. If no relevé data are readily available, a field estimation of the cover values of certain easily distinguishable herb layer species groups is much faster than a vegetation survey with consecutive indicator value analysis, and might be a feasible way of quickly indicating the humus form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aberegg I, Egli M, Sartori G, et al. (2009) Modelling spatial distribution of soil types and characteristics in a high Alpine valley (Val di Sole, Trentino, Italy). Studi Trentini di Scienze Naturali 85: 39–50.

    Google Scholar 

  • Ad-hoc-AG Boden (2005) Bodenkundliche Kartieranleitung, fith ed. Hannover: E. Schweizerbart'sche Verlagsbuchhandlung. (In German)

    Google Scholar 

  • Aeschimann D, Lauber K, Moser DM, et al. (2004) Flora alpina. Bern: Haupt Verlag.

    Google Scholar 

  • Andreetta A, Ciampalini R, Moretti P, et al. (2011) Forest humus forms as potential indicators of soil carbon storage in Mediterranean environments. Biology and Fertility of Soils 47 (1): 31–40. DOI: 10.1007/s00374-010-0499-z

    Article  Google Scholar 

  • Andreetta A, Cecchini G, Bonifacio E, et al. (2016) Tree or soil? Factors influencing humus form differentiation in Italian forests. Geoderma 264, Part A: 195–204. DOI: 10.1016/j.geoderma.2015.11.002

    Article  Google Scholar 

  • Ascher J, Sartori G, Graefe U, et al. (2012) Are humus forms, mesofauna and microflora in subalpine forest soils sensitive to thermal conditions? Biology and Fertility of Soils 48 (6): 709–725. DOI: 10.1007/s00374-012-0670-9

    Article  Google Scholar 

  • Bednorz F, Reichstein M, Broll G, et al. (2000) Humus forms in the forest-alpine tundra ecotone at Stillberg (Dischmatal, Switzerland): Spatial heterogeneity and classification. Arctic, Antarctic, and Alpine Research 32 (1): 21–29. DOI: 10.2307/1552406

    Article  Google Scholar 

  • Bernier N, Ponge JF (1994) Humus form dynamics during the sylvogenetic cylce in a mountain spruce forest. Soil Biology & Biochemistry 26 (2): 183–220. DOI: 10.1016/0038-0717(94) 90161-9

    Article  Google Scholar 

  • Bernier N, Gillet F (2012) Structural relationships among vegetation, soil fauna and humus form in a subalpine forest ecosystem: a Hierarchical Multiple Factor Analysis (HMFA). Pedobiologia 55 (6): 321–334. DOI: 10.1016/j.pedobi.2012. 06.004

    Article  Google Scholar 

  • Blasi C (2010) La vegetazione d’Italia con carta delle Serie di Vegetazione in scala 1:500000. Roma: Palombi. (In Italian)

    Google Scholar 

  • Böhner J, Antonic O (2009) Land surface parameters specific to topo-climatology. In: Hengl T, Reuter HI (eds.), Geomorphometry -Concepts, Software, Applications. Amsterdam: Elsevier. pp 195–226.

    Chapter  Google Scholar 

  • Böhner J, Köthe R, Conrad O, et al. (2002) Soil regionalisation by means of terrain analysis and process parameterization. In: Micheli E, Nachtergaele F, Montanarella L (eds.), Soil Classification 2001. The European Soil Bureau Research Report No. 7, EUR 20398 EN, Luxembourg. pp 213–222.

    Google Scholar 

  • Bonifacio E, Falsone G, Petrillo M (2011) Humus forms, organic matter stocks and carbon fractions in forest soils of northwestern Italy. Biology and Fertility of Soils 47 (5): 555–566. DOI: 10.1007/s00374-011-0568-y

    Article  Google Scholar 

  • Braun-Blanquet J (1964) Pflanzensoziologie. Grundzüge der Vegetationskunde, third ed. Wien, New York: Springer. (In German)

    Google Scholar 

  • Broll G, Brauckmann HJ, Overesch M, et al. (2006) Topsoil characterization -recommendations for revision and expansion of the FAO-Draft (1998) with emphasis on humus forms and biological features. Journal of Plant Nutrition and Soil Science 169 (3): 453–461. DOI: 10.1002/jpln.200521961

    Article  Google Scholar 

  • Carletti P, Vendramin E, Pizzeghello D, et al. (2009) Soil humic compounds and microbial communities in six spruce forests as function of parent material, slope aspect and stand age. Plant and Soil 315(1-2): 47–65. DOI: 10.1007/s11104-008-9732-z

    Article  Google Scholar 

  • Cornwell WK, Cornelissen JHC, Amatangelo K, et al. (2008) Plant species traits are the predominant control on litter decomposition rates within biomes worldwide. Ecology Letters 11 (10): 1065–1071. DOI: 10.1111/j.1461-0248.2008.01219.x

    Article  Google Scholar 

  • Costantini EAC, Fantappié M, L’Abate G (2013) Climate and Pedoclimate of Italy. In: Costantini EAC, Dazzi C (eds.), The Soils of Italy. Dordrecht, Heidelberg, New York: Springer. pp. 19–37.

    Chapter  Google Scholar 

  • Descheemaeker K, Muys B, Nyssen J, et al. (2009) Humus form development during forest restoration in exclosures of the Tigray Highlands, northern Ethiopia. Restoration Ecology 17 (2): 280–289. DOI: 10.1111/j.1526-100X.2007.00346.x

    Article  Google Scholar 

  • Diekmann M (2003) Species indicator values as an important tool in applied plant ecology -a review. Basic and Applied Ecology 4 (6): 493–506. DOI: 10.1078/1439-1791-00185

    Article  Google Scholar 

  • Dierschke H (1994) Pflanzensoziologie. Stuttgart: Ulmer. (In German)

    Google Scholar 

  • Dorrepaal E (2007) Are plant growth-form-based classifications useful in predicting northern ecosystem carbon cycling feedbacks to climate change? Journal of Ecology 95 (6): 1167–1180. DOI: 10.1111/j.1365-2745.2007.01294.x

    Article  Google Scholar 

  • Egli M, Mirabella A, Sartori G, et al. (2006) Effect of north and south exposure on weathering rates and clay mineral formation in Alpine soils. Catena 67 (3): 155–174. DOI: 10.1016/j.catena.2006.02.010

    Article  Google Scholar 

  • Egli M, Sartori G, Mirabella A, et al. (2009) Effect of north and south exposure on organic matter in high Alpine soils. Geoderma 149 (1): 124–136. DOI: 10.1016/j.geoderma.2008.11.027

    Article  Google Scholar 

  • Ellenberg H, Weber HB, Düll R, et al. (1992) Zeigerwerte von Pflanzen in Mitteleuropa (Indicator values of plants in Central Europe). Scripta Geobotanica 18. Göttingen: Goltze. (In German, with English summaries)

  • Ewald J (1999) Relationships between floristic and micro site variability in coniferous forests of the Bavarian Alps. Phytocoenologia 29 (3): 327–344. DOI: 10.1127/phyto/29/1999/327

    Article  Google Scholar 

  • Ewald J (2000) The influence of coniferous canopies on understorey vegetation and soils in mountain forests of the northern Calcareous Alps. Applied Vegetation Science 3 (1): 123–134. DOI: 10.2307/1478926

    Article  Google Scholar 

  • Ewald J (2009) Epigeic bryophytes do not improve bioindication by Ellenberg values in mountain forests. Basic and Applied Ecology 10 (5): 420–426. DOI: 10.1016/j.baae.2008.09.003

    Article  Google Scholar 

  • Ewald J, Hennekens S, Conrad S, et al. (2013) Spatial and temporal patterns of Ellenberg nutrient values in forests of Germany and adjacent regions -a survey based on phytosociological databases. Tuexenia 33: 93–109.

    Google Scholar 

  • Fischer HS (2015) On the combination of species cover values from different vegetation layers. Applied Vegetation Science 18 (1): 169–170. DOI: 10.1111/avsc.12130

    Article  Google Scholar 

  • Gobat J-M, Aragno M, Matthey W (2010) Le sol vivant: bases de pédologie, biologie des sols, third ed. Lausanne: PPUR Presses polytechniques et universitaires romandes. (In French)

    Google Scholar 

  • Hellwig N, Anschlag K, Broll G (2016) A fuzzy logic based method for modeling the spatial distribution of indicators of decomposition in a high mountain environment. Arctic, Antarctic, and Alpine Research 48 (4): 623–635. DOI: 10.1657/AAAR0015-073

    Article  Google Scholar 

  • Hellwig N, Graefe U, Tatti D, et al. (2017) Upscaling the spatial distribution of enchytraeids and humus forms in a high mountain environment on the basis of GIS and fuzzy logic. European Journal of Soil Biology 79: 1–13. DOI: 10.1016/j.ejsobi. 2017.01.001

    Article  Google Scholar 

  • Hiller B, Müterthies A, Holtmeier FK, et al. (2002) Investigations on spatial heterogeneity of humus forms and natural regeneration of Larch (Larix decidua Mill.) and Swiss Stone Pine (Pinus cembra L.) in an alpine timberline ecotone (Upper Engadine, Central Alps, Switzerland). Geographica Helvetica 57 (2): 81–90. DOI: 10.5194/gh-57-81-2002

    Article  Google Scholar 

  • Hiller B, Nuebel A, Broll G, et al. (2005) Snowbeds on Silicate Rocks in the Upper Engadine (Central Alps, Switzerland)-Pedogenesis and Interactions among Soil, Vegetation, and Snow Cover. Arctic, Antarctic, and Alpine Research 37 (4): 465–476.

    Article  Google Scholar 

  • Käfer J, Witte JPM (2004) Cover-weighted averaging of indicator values in vegetation analyses. Journal of Vegetation Science 15 (5): 647–652. DOI: 10.1111/j.1654-1103.2004.tb02306.x

    Article  Google Scholar 

  • Klaus VH, Kleinebecker T, Boch S, et al. (2012) NIRS meets Ellenberg's indicator values: Prediction of moisture and nitrogen values of agricultural grassland vegetation by means of near-infrared spectral characteristics. Ecological Indicators 14 (1): 82–86. DOI: 10.1016/j.ecolind.2011.07.016

    Article  Google Scholar 

  • Küchler M, Küchler H, Bedolla A, et al. (2015) Response of Swiss forests to management and climate change in the last 60 years. Annals of Forest Science 72 (3): 311–320. DOI: 10.1007/s13595-014-0409-x

    Article  Google Scholar 

  • Lalanne A, Bardat J, Lalanne-Amara F, et al. (2008) Opposite responses of vascular plant and moss communities to changes in humus form, as expressed by the Humus Index. Journal of Vegetation Science 19 (5): 645–652. DOI: 10.3170/2007-8-18431

    Article  Google Scholar 

  • Lalanne A, Bardat J, Lalanne-Amara F, et al. (2010) Local and regional trends in the ground vegetation of beech forests. Flora 205 (7): 484–498. DOI: 10.1016/j.flora.2009.12.032

    Article  Google Scholar 

  • Landolt E, Bäumler B, Erhardt A, et al. (2010) Ecological indicator values and biological attributes of the flora of Switzerland and the Alps. Bern: Haupt. (In German)

    Google Scholar 

  • Li P, Wang Q, Endo T, et al. (2010) Soil organic carbon stock is closely related to aboveground vegetation properties in coldtemperate mountainous forests. Geoderma 154 (3): 407–415. DOI: 10.1016/j.geoderma.2009.11.023

    Article  Google Scholar 

  • Ma HP, Yang XL, Guo QQ, et al. (2016) Soil organic carbon pool along different altitudinal level in the Sygera Mountains, Tibetan Plateau. Journal of Mountain Science 13 (3): 476–483. DOI: 10.1007/s11629-014-3421-6

    Article  Google Scholar 

  • Mansfield ER, Helms BP (1982) Detecting multicollinearity. The American Statistician 36(3a): 158–160. DOI: 10.1080/00031305.1982.10482818

    Article  Google Scholar 

  • Meng X-L, Rosenthal R, Rubin DB (1992) Comparing correlated correlation coefficients. Psychological Bulletin 111 (1): 172–175. DOI: 10.1037/0033-2909.111.1.172

    Article  Google Scholar 

  • Minasny B, McBratney AB (2006) A conditioned Latin hypercube method for sampling in the presence of ancillary information. Computers & Geosciences 32 (9): 1378–1388. DOI: 10.1016/j.cageo.2005.12.009

    Article  Google Scholar 

  • Möller H (1997) Reaktions-und Stickstoffzahlen nach Ellenberg als Indikatoren für die Humusform in terrestrischen Waldökosystemen im Raum Hannover. Tuexenia 17: 349–365. (In German)

    Google Scholar 

  • Moore ID, Grayson R, Ladson A (1991) Digital terrain modelling: a review of hydrological, geomorphological, and biological applications. Hydrological Processes 5 (1): 3–30. DOI: 10.1002/hyp.3360050103

    Article  Google Scholar 

  • Myers L, Sirois MJ (2006) Spearman Correlation Coefficients, Differences between, Encyclopedia of Statistical Sciences. Hoboken: John Wiley & Sons, Inc.

    Google Scholar 

  • Nieto-Lugilde D, Lenoir J, Abdulhak S, et al. (2015) Tree cover at fine and coarse spatial grains interacts with shade tolerance to shape plant species distributions across the Alps. Ecography 38 (6): 578–589. DOI: 10.1111/ecog.00954

    Article  Google Scholar 

  • Ponge JF (2003) Humus forms in terrestrial ecosystems: a framework to biodiversity. Soil Biology and Biochemistry 35 (7): 935–945. DOI: 10.1016/S0038-0717(03)00149-4

    Article  Google Scholar 

  • Ponge JF (2013) Plant–soil feedbacks mediated by humus forms: A review. Soil Biology and Biochemistry 57: 1048–1060. DOI: 10.1016/j.soilbio.2012.07.019

    Article  Google Scholar 

  • Ponge JF, Sartori G, Garlato A, et al. (2014) The impact of parent material, climate, soil type and vegetation on Venetian forest humus forms: A direct gradient approach. Geoderma 226-227: 290–299. DOI: 10.1016/j.geoderma.2014.02.022

    Article  Google Scholar 

  • Provincia Autonoma di Trento and Servizio Foreste e Fauna (n.d.) I Dati Della Pianificazione Forestale Aggiornati al 31/12/2004. Trento. (In Italian)

  • Provincia Autonoma di Trento (2006-2008) LIDAR rilievo 2006/2007/2008. (Available online at: http://dati.trentino.it/dataset/lidar-rilievo-2006-2007-2008-link-alservizio-di-download, accessed on 03 Sep. 2016)

  • Roudier P, Hewitt AE, Beaudette DE (2012) A conditioned Latin hypercube sampling algorithm incorporating operational constraints. In: Minasny B, Malone BP, McBratney AB (eds.), Digital Soil Assessments and Beyond: Proceedings of the 5th Global Workshop on Digital Soil Mapping 2012, Sydney, Australia. London: CRC Press. pp 227–231.

    Chapter  Google Scholar 

  • Sartori G, Mancabelli A (2009) Carta dei suoli del Trentino: scala 1:250.000. Museo Tridentino di Scienze Naturali di Trento, Centro di Ricerca per l’Agrobiologia e la Pedologia di Firenze. (In Italian)

    Google Scholar 

  • Schaffers AP, Sýkora KV (2000) Reliability of Ellenberg indicator values for moisture, nitrogen and soil reaction: a comparison with field measurements. Journal of Vegetation Science 11 (2): 225–244. DOI: 10.2307/3236802

    Article  Google Scholar 

  • Scherrer D, Körner C (2011) Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. Journal of Biogeography 38 (2): 406–416. DOI: 10.1111/j.1365-2699.2010.02407.x

    Article  Google Scholar 

  • Szymura TH, Szymura M, Maciol A (2014) Bioindication with Ellenberg's indicator values: A comparison with measured parameters in Central European oak forests. Ecological Indicators 46: 495–503. DOI: 10.1016/j.ecolind.2014.07.013

    Article  Google Scholar 

  • Wagener J (2014) Die Vegetation der Region Val di Sole in den italienischen Alpen. Master thesis, University of Osnabrueck, Osnabrueck. (In German)

    Google Scholar 

  • Wookey PA, Aerts R, Bardgett RD, et al. (2009) Ecosystem feedbacks and cascade processes: understanding their role in the responses of Arctic and alpine ecosystems to environmental change. Global Change Biology 15 (5): 1153–1172. DOI: 10.1111/j.1365-2486.2008.01801.x

    Article  Google Scholar 

  • Zackrisson O, Nilsson MC, Dahlberg A, et al. (1997) Interference mechanisms in conifer-Ericaceae-feathermoss communities. Oikos 78 (2): 209–220. DOI: 10.2307/3546287

    Article  Google Scholar 

  • Zevenbergen LW, Thorne CR (1987) Quantitative analysis of land surface topography. Earth Surface Processes and Landforms 12 (1): 47–56. DOI: 10.1002/esp.3290120107

    Article  Google Scholar 

Download references

Acknowledgments

This study was conducted in the context of the D.A.CH. project DecAlp and funded by the German Research Foundation (DFG) (Grant No. Br1106/23-1), the Swiss National Science Foundation (SNF) (Grant No. 205321L_141186) and the Austrian Science Fund (FWF). The authors thank all colleagues in the project for their outstanding cooperation. We are also grateful to Dott. Fabio Angeli (Ufficio Distrettuale Forestale di Malè) and the Stelvio National Park for supporting the field work. We thank the anonymous reviewers for valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerstin Anschlag.

Additional information

http://orcid.org/0000-0001-6062-0816

http://orcid.org/0000-0002-5889-0427

http://orcid.org/0000-0003-4517-1746

http://orcid.org/0000-0003-1982-0677

http://orcid.org/0000-0003-2967-5178

http://orcid.org/0000-0003-4939-1666

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anschlag, K., Tatti, D., Hellwig, N. et al. Vegetation-based bioindication of humus forms in coniferous mountain forests. J. Mt. Sci. 14, 662–673 (2017). https://doi.org/10.1007/s11629-016-4290-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-4290-y

Keywords

Navigation