Skip to main content
Log in

Relict glacial landscape in the Sierra Baguales Mountain Range (50°-51° S): evidence of glaciation dynamics and types in the eastern foothills of the southern Patagonian Andes

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

The glacial morphology of southern South American presents invaluable evidence to reconstruct former glacier behaviour and its relation to climate and environmental changes. However, there are still spatial and temporal gaps in the reconstruction of the Holocene Patagonian glacial landscape. Here we present the first geomorphological record for the Sierra Baguales Mountain Range (SBMR), forming the eastern foothills of the Southern Patagonian Andes 200 km from the Pacific coast. This area is topographically isolated from the Southern Patagonian Ice Field (SPIF), and is affected by the Westerly Winds. The study area shows evidence of ice sheet and alpine glaciations related to Andean uplift, which caused a marked climatic contrast between its western and eastern flanks since the Last Glacial Maximum (LGM). The regional rock mass strength and precipitation gradient acted as a controlling factor in the glacial cirque distribution and sizes, as well as in the development of glaciation types. We report new radiocarbon dates associated with warm/dry to cold/wet climatic changes during the middle Holocene, when former small alpine glaciers were located in the uppermost section of the SBMR basins, and eventually converged to form a small ice field or a composite valley glacier at lower elevations. This can be explained by an estimated regional temperature drop of 3.8°C±0.8°C, based on a 585±26 m Equilibrium Line Altitude (ELA) descent, inferred by geomorphological evidence and the Accumulation Area Ratio (AAR), in addition to a free-air adiabatic lapse rate. Subsequently, the glaciers receded due to climatic factors including a rise in temperature, as well as non-climatic factors, mainly the glacier bedrock topography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Benn D, Hulton N (2010) An Excel TM spreadsheet program for reconstructing the surface profile of former mountain glaciers and ice caps. Computers & Geosciences 36(5): 605–610. DOI: 10.1016/j.cageo.2009.09.016

    Article  Google Scholar 

  • Benn D, Lehmkuh l (2000) Mass balance and equilibrium-line altitudes of glaciers in high-mountain environments. Quaternary International 65: 15–29. DOI: 10.1016/S1040-6182(99)00034-8

    Article  Google Scholar 

  • Benn D, Ballantyne C (2005) Palaeoclimatic reconstruction from Loch Lomond readvance glaciers in the West Drumochter Hills. Scotland. Journal of Quaternary Science 20(6): 577–592. DOI: 10.1002/jqs.925

    Article  Google Scholar 

  • Bentley M (1997) Relative and radiocarbon chronology of adjacent former outlet glaciers in the Chilean Lake District. Journal of Quaternary Science 12: 25–33.

    Article  Google Scholar 

  • Blaauw M, Van der Plicht J, Van Geel B (2004) Radiocarbon dating of bulk peat samples from raised bogs: non-existence of a previously reported ‘reservoir effect’? Quaternary Science Reviews 23: 1537–1542. DOI: 10.1016/j.quascirev.2004.04.002

    Article  Google Scholar 

  • Bostelmann J, Le Roux J, Vásquez A, et al. (2013) Burdigalian deposits of the Santa Cruz Formation in the Sierra Baguales, Austral (Magallanes) Basin: Age, depositional environment and vertebrate fossils. Andean Geology 40(3): 458–489. DOI: 10.5027/andgeoV40n3-a04

    Google Scholar 

  • Caldenius C (1932) Quaternary glaciations in Patagonia and Tierra del Fuego. Geografiska Annaler 14: 1–164.

    Article  Google Scholar 

  • Carlson A, Murray D, Anslow F, et al. (2010) Assessing the paleo-forcings of southeastern Patagonia deglaciation using General Circulation Model Simulations. American Geophysical Union, Fall Meeting 2010, Abstract #GC23H-04.

    Google Scholar 

  • Casassa G, Rodriguez J, Loriaux T (2014) A new glacier inventory for the Southern Patagonia Icefield and areal changes 1986–2000. In: Global Land Ice Measurements from Space. Springer, Berlin. pp 639–660. DOI: 10.1007/978-3-540-79818-7_27

    Google Scholar 

  • Clapperton C (1993) Nature of environmental changes in South America at the Last Glacial Maximum. Palaeogeography, Palaeoclimatology, Palaeoecology 101(3–4): 189–208. DOI: 10.1016/0031-0182(93)90012-8

    Article  Google Scholar 

  • Condom T, Coudrain A, Sicart J, et al. (2007) Computation of the space and time evolution of equilibrium-line altitudes on Andean glaciers (10 degrees N-55 degrees S). Global and Planetary Change 59(1–4): 189–202. DOI: 10.1016/j.gloplacha.2006.11.021

    Article  Google Scholar 

  • Coronato A, Meglioli M, Rabassa J (2004) Glaciations in the Magellan Straits and Tierra del Fuego, Southernmost South America. In: Ehlers J and Gibbard P (Eds.) Quaternary Glaciations: Extent and Chronology. Part III: South America, Asia, Africa, Australia and Antarctica. Quaternary Book Series, Elsevier, Amsterdam. pp 45–48. DOI: 10.1016/S1571-0866(04)80110-6

    Google Scholar 

  • Charrier R, Pinto L, Rodriguez M (2007) Tectonostratigraphic evolution of the Andean orogen in Chile. In: The Geology of Chile. The Geological Society Publishing House. Bath, UK. pp 21–115.

    Google Scholar 

  • DGA (1987) National water balance. Direccion General de Aguas Tech. Rep 60 pp.

    Google Scholar 

  • Dahl S, Nesje A (1996) A new approach to calculating Holocene winter precipitation by combining glacier equilibrium-line altitudes and pine-tree limits: a case study from Hardangerjøkulen, central southern Norway. The Holocene 6: 381–398. DOI: 10.1177/095968369600600401

    Article  Google Scholar 

  • Denton G, Lowell T, Heusser C, et al. (1999) Geomorphology, stratigraphy, and radiocarbon chronology of Llanquihue Drift in the area of the Southern Lake District, Seno Reloncaví and Isla Grande de Chiloé, Chile. Geografiska Annaler. Series A Physical Geography 81: 167–229. DOI: 10.1111/1468-0459.00057

    Article  Google Scholar 

  • Douglass D, Bockhein J (2006) Soil-forming rates and processes on Quaternary moraines near Lago Buenos Aires, Argentina. Quaternary Research 65: 293–307. DOI: 10.1016/j.yqres.2005.08.027

    Article  Google Scholar 

  • Douglas D, Singer B, Kaplan M, et al. (2005) Evidence of early Holocene glacial advances in southern South America from cosmogenic surface-exposure dating. Geology 33(3): 237–240. DOI: 10.1130/G21144.1

    Article  Google Scholar 

  • Ehlers J, Gibbard P (2007) The extent and chronology of Cenozoic global glaciations. Quaternary International 164: 6–20. DOI: 10.1016/j.quaint.2006.10.008

    Article  Google Scholar 

  • Fogwill C, Kubik P (2005) A glacial stage spanning the Antarctic Cold Reversal in Torres del Paine (51° S), Chile, based on preliminary cosmogenic exposure ages. Geografiska Annaler, Series A: Physical Geography 87(2): 403–408.

    Article  Google Scholar 

  • Foster D, Brocklehurst S, Gawthorpe R (2008) Small valley glaciers and the effectiveness of the glacial buzzsaw in the northern Basin and Range, USA. Geomorphology 102(3): 624–639. DOI: 10.1016/j.geomorph.2008.06.009

    Article  Google Scholar 

  • García J, Kaplan M, Hall B, et al. (2012) Glacier expansion in southern Patagonia throughout the Antarctic Cold Reversal. Geology 40(9): 859–862. DOI: 10.1130/G33164.1

    Article  Google Scholar 

  • Garreaud R (2007) Precipitation and Circulation Covariability in the Extratropics. Journal of Climate 20: 4789–4797. DOI: 10.1175/JCLI4257.1

    Article  Google Scholar 

  • Glasser N, Jansson K, Harrison S, et al. (2008) The glacial geomorphology and Pleistocene history of South America between 38°S and 56°S. Quaternary Science Reviews 27(3–4): 365–390. DOI: 10.1016/j.quascirev.2007.11.011

    Article  Google Scholar 

  • Gutierrez N, Le Roux J, Bostelmann E, et al. (2013) Geology and stratigraphy of Sierra Baguales, Ultima Esperanza Province, Magallanes, Chile. Bolletino di Geofisica Teorica ed Applicata 54: 327–330.

    Google Scholar 

  • Heusser C (2003) Ice age southern Andes: a chronicle of palaeoecological events. New York University. p 260.

    Google Scholar 

  • Hoek E, Diederichs M (2006) Empirical estimation of rock mass modulus. International Journal of Rock Mechanics and Mining Sciences 43: 203–215. DOI: 10.1016/j.ijrmms.2005.06.005

    Article  Google Scholar 

  • Hostetler S, Clark P (1997) Climatic controls of western US glaciers at the Last Glacial Maximum. Quaternary Science Reviews 16(6): 505–511. DOI: 10.1016/S0277-3791(96)00116-3

    Article  Google Scholar 

  • Hughes P, Gibbard P, Woodward J (2007) Geological controls on Pleistocene glaciation and cirque form in Greece. Geomorphology 88(3–4): 242–253. DOI: 10.1016/j.geomorph.2006.11.008

    Article  Google Scholar 

  • Hulton N, Purves R, McCulloch R, et al. (2002) The Last Glacial Maximum and deglaciation in southern South America. Quaternary Science Reviews 21: 233–241. DOI: 10.1016/S0277-3791(01)00103-2

    Article  Google Scholar 

  • Kaplan M, Strelin J, Schaefer J, et al. (2011) In-situ cosmogenic 10Be production rate at Lago Argentino, Patagonia: Implications for late-glacial climate chronology. Earth and Planetary Science Letters 309(1): 21–32. DOI: 10.1016/j.epsl.2011.06.018

    Article  Google Scholar 

  • Kaplan M, Hein R, Hubbard A, et al. (2009) Can glacial erosion limit the extent of glaciation? Geomorphology 103(2): 172–179. DOI: 10.1016/j.geomorph.2008.04.020

    Article  Google Scholar 

  • Kaplan M, Douglas D, Singer B, et al. (2005) Cosmogenic nuclide chronology of pre-last glacial maximum moraines at Lago Buenos Aires, 46ºS, Argentina. Quaternary Research 63: 301–315. DOI: 10.1016/j.yqres.2004.12.003

    Article  Google Scholar 

  • Kaplan M, Ackert R, Singer B, et al. (2004) Cosmogenic nuclide chronology of millennial-scale glacial advances during Oisotope stage 2 in Patagonia. Geological Society of America Bulletin 116(3–4): 308–321. DOI: 10.1130/B25178.1

    Article  Google Scholar 

  • Lagabrielle Y, Labaume P, Blanquat M (2010) Mantle exhumation, crustal denudation, and gravity tectonics during Cretaceous rifting in the Pyrenean realm (SW Europe): insights from the geological setting of the lherzolite bodies. Tectonics 29: 4. DOI: 10.1029/2009TC002588

    Article  Google Scholar 

  • Le Roux J, Puratich J, Mourgues F, et al. (2010) Estuary deposits in the Río Baguales Formation (Chattian-Aquitanean), Magallanes Province, Chile. Andean Geology 37(2): 329–344.

    Google Scholar 

  • Lorrey A, Fauchereau N, Stanton C, et al. (2013) The Little Ice Age climate of New Zealand reconstructed from Southern Alps cirque glaciers: a synoptic type approach. Climate Dynamics 42(11): 3039–3060. DOI: 10.1007/s00382-013-1876-8

    Google Scholar 

  • Lowell T, Heusser J, Andersen G, et al. (1995) Interhemispheric correlation of late Pleistocene events. Science 269: 1541–1549. DOI: 10.1126/science.269.5230.1541

    Article  Google Scholar 

  • Marinos V, Marinos P, Hoek E (2005) The geological Strength index: applications and limitations. Bulletin of Engineering Geology and the Environment 64: 55–65. DOI: 10.1007/s10064-004-0270-5

    Article  Google Scholar 

  • Marden C (1997) Late-glacial fluctuations of South Patagonian Icefield, Torres del Paine National Park, southern Chile. Quaternary International 38–39: 61–68. DOI: 10.1016/S1040-6182(96)00019-5

    Article  Google Scholar 

  • Meierding T (1982) Late Pleistocene glacial equilibriumlinealtitudes in the Colorado front range: a comparison of methods. Quaternary Research 18: 289–310. DOI: 10.1016/0033-5894(82)90076-X

    Article  Google Scholar 

  • McCulloch R, Bentley M, Purves R, et al. (2000) Climatic inferences from glacial and palaeoecological evidence at the last glacial termination, southern South America. Journal of Quaternary Science 15(4): 409–417. DOI: 10.1002/1099-1417(200005)15:4<409::AID-JQS539>3.0.CO;2-#

    Article  Google Scholar 

  • Mercer J (1983) Cenozoic glaciation in the Southern Hemisphere. Annual Review of Earth and Planetary Sciences 11: 99–132. DOI: 10.1146/annurev.ea.11.050183.000531

    Article  Google Scholar 

  • Mercer J (1976) Glacial history of southernmost South America. Quaternary Research 6(2): 125–166. DOI: 10.1016/0033-5894(76)90047-8

    Article  Google Scholar 

  • Mercer J (1967) Southern hemisphere glacier atlas. Office Chief on Research and Development.650 Department of the Army. Technical report 67-76-ES. p 325.

    Google Scholar 

  • Meyer I, Wagner S (2008) The Little Ice Age in southern Patagonia: comparison between paleoecological reconstructions and downscaled model output of a GCM simulation. Pages News 16: 12–13.

    Google Scholar 

  • Mitchell S, Montgomery D (2006) Influence of a glacial buzzsaw on the height and morphology of the Cascade Range in central Washington State, USA. Quaternary Research 65(1): 96–107. DOI: 10.1016/j.yqres.2005.08.018

    Article  Google Scholar 

  • Montgomery D, Balco G, Willett S (2001) Climate, tectonics, and the morphology of the Andes. Geology 29(7): 579–582. DOI: 10.1130/0091-7613(2001)029<0579:CTATMO>2.0.CO;2

    Article  Google Scholar 

  • Moreno P (2004) Millennial-scale climate variability in northwest Patagonia over the last 15 000 yr. Journal of Quaternary Science 19(1): 35–47. DOI: 10.1002/jqs.813

    Article  Google Scholar 

  • Moreno P, Francois J, Moy C, et al. (2010) Covariability of the Southern Westerlies and atmospheric CO2 during the Holocene. Geology 38(8): 727–730. DOI: 10.1130/G30962.1

    Article  Google Scholar 

  • Nesje A, Dahl S (2003) The ‘Little Ice Age’–only temperature? The Holocene 13(1): 139–145. DOI: 10.1191/0959683603hl603fa

    Article  Google Scholar 

  • Nesje A, Dahl S (2000) Is the North Atlantic Oscillation reflected in Scandinavian glacier mass balance records? Journal of Quaternary Science 15(6): 587–601. DOI: 10.1002/1099-1417(200009)15:6<587::AID-JQS533>3.0.CO;2-2

    Article  Google Scholar 

  • Nordenskjöld O (1899) Geological map of the Magellan territories with explanatory notes. Kungl. Boktryckeriet. PA Norstedt & Söner 1(3): 81–85.

    Google Scholar 

  • Oerlemans J (1992) Climate sensitivity of glaciers in southern Norway: application of an energy-balance model to Nigardsbreen, Hellstugubreen and Alfotbreen. Journal of Glaciology 38(129): 223–232. DOI: 10.3198/1992JoG38-129-223-232

    Google Scholar 

  • Ohmura A, Kasser P, Funk M (1992) Climate at the equilibrium line of glaciers. Journal of Glaciology 38: 397–411. DOI: 10.3198/1992JoG38-130-397-411

    Google Scholar 

  • Peña H, Gutierrez R (1992) Statistical analysis of precipitation and air temperature in the Southern Patagonian Icefield. In: Glaciological Researches in Patagonia. Nagoya, Japanese Society of Snow and Ice, Data Center for Glacier Research, pp. 95–108.

    Google Scholar 

  • Porter S (1989) Some geological implications of average Quaternary glacial conditions. Quaternary Research 32(3): 245–261. DOI: 10.1016/0033-5894(89)90092-6

    Article  Google Scholar 

  • Putnam A, Schaefer J, Denton G, et al. (2012) Regional climate control of glaciers in New Zealand and Europe during the preindustrial Holocene. Nature Geosciences Letters 5: 627–630. DOI: 10.1038/ngeo1548

    Article  Google Scholar 

  • Rabassa J, Coronato A, Martínez O (2011) Late Cenozoic glaciations in Patagonia and Tierra del Fuego: an updated review. Biological Journal of the Linnean Society 103(25): 316–335. DOI: 10.1111/j.1095-8312.2011.01681.x

    Article  Google Scholar 

  • Rabassa J, Coronato A (2009) Glaciations in Patagonia and Tierra del Fuego during the Ensenadan Stage/Age (Early Pleistocene–earliest Middle Pleistocene). Quaternary International 210(1–2): 18–36. DOI: 10.1016/j.quaint.2009.06.019

    Article  Google Scholar 

  • Rabassa J, Coronato A, Salemme M (2005) Chronology of the Late Cenozoic Patagonian glaciations and their correlation with biostratigraphic units of the Pampean region (Argentina). Journal of South American Earth Sciences 20(1–2): 81–103. DOI: 10.1016/j.jsames.2005.07.004

    Article  Google Scholar 

  • Ramos V, Ghiglione M (2008) Tectonic evolution of the Patagonian Andes. In: The Late Cenozoic of Patagonia and Tierra del Fuego. Elsevier, Amsterdam. pp 57–71.

    Chapter  Google Scholar 

  • Sagredo E, Moreno P, Villa-Martínez R, et al. (2011) Fluctuations of the Última Esperanza ice lobe (52°S), Chilean Patagonia, during the last glacial maximum and termination 1. Geomorphology 125: 92–108. DOI: 10.1016/j.geomorph.2010.09.007

    Article  Google Scholar 

  • Strelin J, Kaplan M, Vandergoes M, et al. (2014) Holocene glacier history of the Lago Argentino basin, Southern Patagonian Icefield. Quaternary Science Reviews 124: 715–145. DOI: 10.1016/j.quascirev.2014.06.026

    Google Scholar 

  • Strelin J, Denton G, Vandergoes M, et al. (2011) Radiocarbon chronology of the late-glacial Puerto Bandera moraines, Southern Patagonian Icefield, Argentina. Quaternary Science Reviews 30: 2551–2569. DOI: 10.1016/j.quascirev.2011.05.004

    Article  Google Scholar 

  • Strelin J, Malagnino E (2000) Late-Glacial History of Lago Argentino, Argentina, and Age of the Puerto Bandera Moraines. Quaternary Research 54(3): 339–347. DOI: 10.1006/qres.2000.2178

    Article  Google Scholar 

  • Sudgen D, Bentley M, Fogwill C, et al. (2005) Late-glacial glacier events in southernmost South America: A blend of “northern” and “southern” hemispheric climatic signals? Geografiska Annaler, Series A Physical Geography 87(2): 273–288.

    Article  Google Scholar 

  • Sugden D, John B (1976) Glaciers and Landscape. E. Arnold. London. p 376.

    Google Scholar 

  • Talma A, Vogel J (1993) Mathematics use for calibration scenario–A simplified approach to calibrating C14 dates. Radiocarbon 35(2): 317–322.

    Article  Google Scholar 

  • Turetsky M, Manning S, Wieder D (2012) Dating recent peats deposits. Wetlands 24(2): 324–356. DOI: 10.1672/0277-5212(2004)024[0324:DRPD]2.0.CO;2

    Article  Google Scholar 

  • Vieira G (2008) Combined numerical and geomorphological reconstruction of the Serra da Estrela Plateau Icefield, Portugal. Geomorphology 97(1–2): 190–207. DOI: 10.1016/j.geomorph.2007.02.042

    Article  Google Scholar 

  • Villa-Martinez R, Moreno P (2007) Pollen evidence for variations in the southern margin of the Westerly Winds in SW Patagonia over the last 12,600 years. Quaternary Research 68: 400–409. DOI: 10.1016/j.yqres.2007.07.003

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful for grants from the “Becas de Doctorado en Chile” Scholarships Program and “Gastos Operacionales para Proyecto de Tesis Doctoral” of CONICYT. Juan MacLean and his family kindly allowed access to the farms Las Cumbres and Baguales and Juan Pablo Riquez allowed access to the farm Verdadera Argentina. Juan Carlos Aravena and Rodrigo Villa-Martinez of the Universidad de Magallanes, José Luis Oyarzun, and Juan José San Martin provided much-appreciated logistical support. Ricardo Arce, Mauricio Gonzales, Mike Kaplan and Carly Peltier lent invaluable assistance in field activities. Le Roux was supported by Project CONICYT/FONDAP/15090013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Miguel Araos.

Additional information

http://orcid.org/0000-0002-5443-9911

http://orcid.org/000-0003-0173-4471

http://orcid.org/0000-0003-2726-6645

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araos, J.M., Le Roux, J.P. & Gutierrez, N.M. Relict glacial landscape in the Sierra Baguales Mountain Range (50°-51° S): evidence of glaciation dynamics and types in the eastern foothills of the southern Patagonian Andes. J. Mt. Sci. 14, 282–295 (2017). https://doi.org/10.1007/s11629-016-4151-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-016-4151-8

Keywords

Navigation