Skip to main content
Log in

Performance comparison of permafrost models in Wudaoliang Basin, Qinghai-Tibet Plateau, China

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Knowledge of the spatial distribution of permafrost and the effects of climate on ground temperature are important for land use and infrastructure development on the Qinghai-Tibet Plateau (QTP). Different permafrost models have been developed to simulate the ground temperature and active layer thickness (ALT). In this study, Temperature at Top of Permafrost (TTOP) model, Kudryavtsev model and modified Stefan solution were evaluated against detailed field measurements at four distinct field sites in the Wudaoliang Basin to better understand the applicability of permafrost models. Field data from 2012 to 2014 showed that there were notable differences in observed ground temperatures and ALTs within and among the sites. The TTOP model is relatively simple, however, when driven by averaged input values, it produced more accurate permafrost surface temperature (Tps) than the Kudryavtsev model. The modified Stefan solution resulted in a satisfactory accuracy of 90%, which was better than the Kudryavtsev model for estimating ALTs. The modified Stefan solution had the potential of being applied to climate-change studies in the future.

Furthermore, additional field investigations over longer periods focusing on hydrology, which has significant influence on permafrost thaw, are necessary. These efforts should employ advanced measurement techniques to obtain adequate and extensive local parameters that will help improve model accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Cheng GD, Jin HJ (2013) Permafrost and groundwater on the Qinghai-Tibet Plateau and in northeast China. Hydrogeology Journal 21(1): 5–23. DOI: 10.1007/s10040-012-0927-2

    Article  Google Scholar 

  • Ding YJ (1998) Recent degradation of permafrost in China and the response to climatic warming. Proceedings of the 7th International Conference of Permafrost, Yellowknife, Canada. pp 225–230.

    Google Scholar 

  • Fang HB, Zhao L, Wu XD, et al. (2015) Soil taxonomy and distribution characteristics of the permafrost region in the Qinghai-Tibet Plateau, China. Journal of Mountain Science 12(6): 1448–1459. DOI: 10.1007/s11629-014-3133-y

    Article  Google Scholar 

  • Gisnâs K, Westermann S, Schuler TV, et al. (2014) A statistical approach to represent small-scale variability of permafrost temperatures due to snow cover. The Cryosphere 8(6): 2063–2074. DOI: 10.5194/tc-8-2063-2014

    Article  Google Scholar 

  • Gubler S, Fiddes J, Keller M, et al. (2011) Scale-dependent measurement and analysis of ground surface temperature variability in alpine terrain. The Cryosphere 5(2): 431–443. DOI: 10.5194/tc-5-431-2011

    Article  Google Scholar 

  • Harris C, Arenson LU, Christiansen HH, et al. (2009) Permafrost and climate in Europe: Monitoring and modelling thermal, geomorphological and geotechnical responses. Earth Science Reviews 92(3–4): 117–171. DOI: 10.1016/j.earscirev.2008.12.002

    Article  Google Scholar 

  • Henry K, Smith M (2001) A model-based map of ground temperatures for the permafrost regions of Canada. Permafrost and Periglacial Processes 12(4): 389–398. DOI: 10.1002/ppp.399

    Article  Google Scholar 

  • Janke JR, Williams MW, Evans JA (2012) A comparison of permafrost prediction models along a section of Trail Ridge Road, Rocky Mountain National Park, Colorado, USA. Geomorphology 138(1): 111–120. DOI: 10.1016/j.geomorph.2011.08.029

    Article  Google Scholar 

  • Jin HJ, Sun L, Wang S, et al. (2008) Dual influences of local environmental variables on ground temperatures on the interior-eastern Qinghai-Tibet Plateau (I): Vegetation and snow cover. Journal of Glaciology and Geocryology 30(4): 535–545. (In Chinese)

    Google Scholar 

  • Jin HJ, Wei Z, Wang S, et al. (2008) Assessment of frozenground conditions for engineering geology along the Qinghai-Tibet highway and railway, China. Engineering Geology 101(3–4): 96–109. DOI: 10.1016/j.enggeo.2008.04.001

    Article  Google Scholar 

  • Jin HJ, Zhao L, Wang S, et al. (2006) Thermal regimes and degradation modes of permafrost along the Qinghai-Tibet Highway. Science China Earth Sciences 49(11): 1170–1183. DOI: 10.1007/s11430-006-2003-z

    Article  Google Scholar 

  • Kudryavtsev VA, Garagulya LS, Melamed V (1977) Fundamentals of frost forecasting in geological engineering investigations, Nauka, Moscow. Draft translation 606. CRREL, Hanover, NH. pp 489.

    Google Scholar 

  • Kurylyk BL, Macquarrie KTB, Mckenzie JM (2014a) Climate change impacts on groundwater and soil temperatures in cold and temperate regions: Implications, mathematical theory, and emerging simulation tools. Earth Science Reviews 138: 313–334. DOI: 10.1016/j.earscirev.2014.06.006

    Article  Google Scholar 

  • Kurylyk BL, Masaki H (2015) Improved stefan equation correction factors to accommodate sensible heat storage during soil freezing or thawing. Permafrost and Periglacial Processes. (http://onlinelibrary.wiley.com/doi/10.1002/ppp.1865/pdf, Accessed on 2015-9-30). DOI: 10.1002/ppp.1865

    Google Scholar 

  • Kurylyk BL, Mckenzie JM, Macquarrie KTB et al. (2014b) Analytical solutions for benchmarking cold regions subsurface water flow and energy transport models: Onedimensional soil thaw with conduction and advection. Advances in Water Resources 70(4): 172–184. DOI: 10.1016/j.advwatres.2014.05.005

    Article  Google Scholar 

  • Li SX, Cheng GD (1996) The future thermal regime of numerical simulating permafrost on Qinghai-Xizang (Tibet) Plateau, China, under climate warming. Science China Earth Sciences 39(4): 434–441.

    Google Scholar 

  • Li X, Cheng GD (1999) A GIS-aided response model of highaltitude permafrost to global change. Science China Earth Sciences 42(1): 72–79. DOI: 10.1007/BF02878500

    Article  Google Scholar 

  • Lin ZJ, Burn CR, Niu FJ, et al. (2015) The thermal regime, including a reversed thermal offset, of arid permafrost sites with variations in vegetation cover density, Wudaoliang Basin, Qinghai-Tibet Plateau. Permafrost and Periglacial Processes 26(2): 142–159. DOI: 10.1002/ppp.1840

    Article  Google Scholar 

  • Luo DL, Jin HJ, Marchenko S, et al. (2014) Distribution and changes of active layer thickness (ALT) and soil temperature (TTOP) in the source area of the Yellow River using the GIPL model. Science China Earth Sciences 57(8): 1834–1845. DOI: 10.1007/S11430-014-4852-1

    Article  Google Scholar 

  • Lv, LZ, Jin HJ, Wang S (2008) Dual influence of local environmental variables on ground temperatures on the Interior-Eastern Qinghai-Tibet Plateau (II): Sand-layer and surface water bodies. Journal of Glaciology and Geocryology 30(4): 546–555. (In Chinese)

    Google Scholar 

  • Pogliotti P, Guglielmin M, Cremonese E, et al. (2015) Warming permafrost and active layer variability at Cime Bianche, Western European Alps. The Cryosphere 9(2): 647–661. DOI: 10.5194/tc-9-647-2015

    Article  Google Scholar 

  • Riseborough D (2002) The mean annual temperature at the top of permafrost, the TTOP model, and the effect of unfrozen water. Permafrost and Periglacial Processes 13(2): 137–143. DOI: 10.1002/ppp.418

    Article  Google Scholar 

  • Riseborough D (2007) The effect of transient conditions on an equilibrium permafrost-climate model. Permafrost and Periglacial Processes 18(1): 21–32. DOI: 10.1002/ppp.579

    Article  Google Scholar 

  • Riseborough D, Shiklomanov N, Etzelmüller B, et al. (2008) Recent advances in permafrost modelling. Permafrost and Periglacial Processes 19(2): 137–156. DOI: 10.1002/ppp.615

    Article  Google Scholar 

  • Romanovsky V, Osterkamp T (1997) Thawing of the active layer on the coastal plain of the Alaskan Arctic. Permafrost and Periglacial Processes 8(1): 1–22. DOI: 10.1002/ppp.579

    Article  Google Scholar 

  • Rodder T, Kneisel C (2012) Influence of snow cover and grain size on the ground thermal regime in the discontinuous permafrost zone, Swiss Alps. Geomorphology 175-176: 1176–189. DOI: 10.1016/j.geomorph.2012.07.008

    Article  Google Scholar 

  • Sazonova T, Romanovsky V (2003) A model for regional-scale estimation of temporal and spatial variability of active layer thickness and mean annual ground temperatures. Permafrost and Periglacial Processes 14(2): 125–139. DOI: 10.1002/ppp.449

    Article  Google Scholar 

  • Smith M, Riseborough D (1996) Permafrost monitoring and detection of climate change. Permafrost and Periglacial Processes 7(4): 301–309. DOI: 10.1002/(SICI)1099-1530(199610)7:4<301:AID-PPP231>3.0.CO;2-R

    Article  Google Scholar 

  • Smith M, Riseborough D (2002) Climate and the limits of permafrost: a zonal analysis. Permafrost and Periglacial Processes 13(1): 1–15. DOI: 10.1002/ppp.410

    Article  Google Scholar 

  • Van Everdingen RO (1998) Multi-language glossary of permafrost and related ground-ice terms. International Permafrost Association/National Snow and Ice Data Center, University of Colorado, Boulder.

    Google Scholar 

  • Vaughan DG, Comiso JC, Allison J, et al. (2013) Observations: Cryosphere. Climate Change 2013: The physical science basis. Contribution of working group I to the Fifth Assessment Report of the Intergovernmental Panel on climate change. Cambridge University Press, Cambridge, United Kingdom and New York, USA. pp 362.

    Google Scholar 

  • Wilhelm KR, Bockheim JG, Kung S (2015) Active layer thickness prediction on the Western Antarctic Peninsula. Permafrost and Periglacial Processes 26(2): 188–199. DOI: 10.1002/ppp.1845

    Article  Google Scholar 

  • Wu QB, Zhang TJ (2010) Changes in active layer thickness over the Qinghai-Tibetan Plateau from 1995 to 2007. Journal of Geophysical Research Atmospheres 115(D09107): 1–12. DOI: 10.1029/2009JD012974

    Google Scholar 

  • Wu QB, Zhang TJ (2008) Recent permafrost warming on the Qinghai-Tibetan Plateau. Journal of Geophysical Research Atmospheres 113(D13108): 1–22. DOI: 10.1029/2007JD009539

    Google Scholar 

  • Wu TH, Wang QB, Watanabe M, et al. (2008) Mapping vertical profile of discontinuous permafrost with ground penetrating radar at Nalaikh depression, Mongolia. Environmental Geology 56(8): 1577–1583. DOI: 10.1007/s00254-008-1255-7

    Article  Google Scholar 

  • Wang SX (1993) Permafrost changes along with the Qinghai-Xizang Highway during the last decades. Arid Land Geography 16(1): 1–8. (In Chinese)

    Google Scholar 

  • Xie CW, Zhao L, Wu TH, et al. (2012) Changes in the thermal and hydraulic regime within the active layer in the Qinghai-Tibet Plateau. Journal of Mountain Science 9(4): 483–491. DOI: 10.1007/s11629-012-2352-3

    Article  Google Scholar 

  • Xu XZ, Wang JD, Zhang LX (2010) Physics of frozen soils. Science Press, Beijing, China. pp 85–89. (In Chinese)

    Google Scholar 

  • Yang MX, Nelson FE, Shiklomanov NI, et al. (2010) Permafrost degradation and its environmental effects on the Tibetan Plateau: A review of recent research. Earth Science Reviews 103(1): 31–44. DOI: 10.1016/j.earscirev.2010.07.002

    Article  Google Scholar 

  • Zhang TJ, Barry RG, Knowles K, et al. (1999) Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere. Polar Geography 31(1): 132–154. DOI: 10.1080/10889370802175895

    Article  Google Scholar 

  • Zhao L, Wu QB, Marchenko SS, et al. (2010) Thermal state of permafrost and active layer in Central Asia during the international polar year. Permafrost and Periglacial Processes 21(2): 198–207. DOI: 10.1002/ppp.688

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu-jun Niu.

Additional information

http://orcid.org/0000-0002-8855-8388

http://orcid.org/0000-0003-0524-2618

http://orcid.org/0000-0001-6557-9998

http://orcid.org/0000-0002-8737-6646

http://orcid.org/0000-0002-0093-0588

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Ga., Niu, Fj., Lin, Zj. et al. Performance comparison of permafrost models in Wudaoliang Basin, Qinghai-Tibet Plateau, China. J. Mt. Sci. 13, 1162–1173 (2016). https://doi.org/10.1007/s11629-015-3745-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-015-3745-x

Keywords

Navigation