Skip to main content
Log in

Full 2D hydrodynamic modelling of rainfall-induced flash floods

  • Published:
Journal of Mountain Science Aims and scope Submit manuscript

Abstract

Mountain catchments are prone to flash flooding due to heavy rainfall. Enhanced understanding of the generation and evolution processes of flash floods is essential for effective flood risk management. However, traditional distributed hydrological models based on kinematic and diffusion wave approximations ignore certain physical mechanisms of flash floods and thus bear excessive uncertainty. Here a hydrodynamic model is presented for flash floods based on the full two-dimensional shallow water equations incorporating rainfall and infiltration. Laboratory experiments of overland flows were modelled to illustrate the capability of the model. Then the model was applied to resolve two observed flash floods of distinct magnitudes in the Lengkou catchment in Shanxi Province, China. The present model is shown to be able to reproduce the flood flows fairly well compared to the observed data. The spatial distribution of rainfall is shown to be crucial for the modelling of flash floods. Sensitivity analyses of the model parameters reveal that the stage and discharge hydrographs are more sensitive to the Manning roughness and initial water content in the catchment than to the Green-Ampt head. Most notably, as the flash flood augments due to heavier rainfall, the modelling results agree with observed data better, which clearly characterizes the paramount role of rainfall in dictating the floods. From practical perspectives, the proposed model is more appropriate for modelling large flash floods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

d :

distance

f :

the infiltration rate

F :

cumulative infiltration depth

F, G :

are interface fluxes in the x - and y - directions respectively

g :

the acceleration due to gravity

h :

water depth

H c :

Green-Ampt capillary head

i, j :

the spatial node indexes in the x - and y - directions respectively

k :

the time level

K s :

saturated hydraulic conductivity

n :

Manning roughness

N :

number of rain gauges

q x , q y :

unit discharges in the x - and y - directions respectively

r :

the rainfall intensity

R :

precipitation

RSR :

root mean error- observations standard deviation ratio

PBIAS :

percentage bias

S :

the source term

S f :

friction source term

S s :

bed source term

S0 :

additional bed source term

U :

a vector of conserved variables

u, v :

velocity components in the x - and y - directions respectively

z :

bed elevation

θ i :

initial volumetric water content

θ s :

saturated volumetric water content

τ bx , τ by :

bed stresses in the x - and y - directions respectively

Δt :

the time step

Δx, Δy :

spatial steps in the x - and y - directions respectively

References

  • Aleotti P (2004) A warning system for rainfall-induced shallow failures. Engineering Geology 73 (3-4): 247–265. DOI: 10.1016/j.enggeo.2004.01.007

    Article  Google Scholar 

  • Alfieri L, Thielen J, Pappenberger F (2012) Ensemble hydrometeorological simulation for flash flood early detection in southern Switzerland. Journal of Hydrology 424-425: 143–153. DOI: 10.1016/j.jhydrol.2011.12.038

    Article  Google Scholar 

  • Ballesteros Cánovas JA, Eguibar M, Bodoque JM, et al. (2011) Estimating flash flood discharge in an ungauged mountain catchment with 2D hydraulic models and dendrogeomorphic palaeostage indicators. Hydrological Processes 25 (6): 970–979. DOI:10.1002/hyp.7888

    Article  Google Scholar 

  • Barros AP, Colello JD (2001) Surface roughness for shallow overland flow over crushed stone surfaces. Journal of Hydraulic Engineering 127 (1): 38–52. DOI:10.1061/(ASCE)0733-9429(2001)127:1 (38)

    Article  Google Scholar 

  • Berardi L, Laucelli D, Simeone V, et al. (2013) Simulating floods in ephemeral streams in Southern Italy by full-2D hydraulic models. International Journal of River Basin Management 11 (1): 1–17. DOI: 10.1080/15715124.2012.746975

    Article  Google Scholar 

  • Biondi D, De Luca DL (2013) Performance assessment of a Bayesian Forecasting System (BFS) for real-time flood forecasting. Journal of Hydrology 479: 51–63. DOI: 10.1016/ j.jhydrol.2012.11.019

    Article  Google Scholar 

  • Cao Z, Wang X, Zhang S, et al. (2010) Hydrodynamic modelling in support of flash flood warning. Proceedings of the ICE -Water Management 163 (7): 327–340. DOI:10.1680/wama.2010.163.5.255

    Article  Google Scholar 

  • Carpenter T, Sperfslage J, Georgakakos K, et al. (1999) National threshold runoff estimation utilizing GIS in support of operational flash flood warning systems. Journal of Hydrology 224 (1): 21–44. DOI: 10.1016/S0022-1694(99)00115-8

    Article  Google Scholar 

  • Cea L, Garrido M, Puertas J, et al. (2010) Overland flow computations in urban and industrial catchments from direct precipitation data using a two-dimensional shallow water model. Water Science and Technology 62 (9): 1998–2008. DOI:10.2166/wst.2010.746

    Article  Google Scholar 

  • Chen L, Young MH (2006) Green-Ampt infiltration model for sloping surfaces. Water Resources Research 42 (7): 1–9. DOI:10.1029/2005WR004468

    Article  Google Scholar 

  • Cheng N (2015) Resistance Coefficients for Artificial and Natural Coarse-Bed Channels: Alternative Approach for Large-Scale Roughness. Journal of Hydraulic Engineering, 141 (2): 040140721-040140727. DOI: 10.1061/(ASCE)HY.1943-7900.0000966

  • Cools J, Vanderkimpen P, El Afandi G, et al. (2012) An early warning system for flash floods in hyper-arid Egypt. Natural Hazards and Earth System Science 12 (2): 443–457. DOI: 10.5194/nhess-12-443-2012

    Article  Google Scholar 

  • Corliss G (1977) Which root does the bisection algorithm find? SIAM Review 19 (2): 325–327.

    Article  Google Scholar 

  • Costabile P, Costanzo C, Macchione F (2013) A storm event watershed model for surface runoff based on 2D fully dynamic wave equations. Hydrological Processes 27 (4): 554–569. DOI:10.1002/hyp.9237

    Article  Google Scholar 

  • de Lima JLMP (1992) Model KININF for overland flow on pervious surfaces. In: Parson T, Abrahams A (eds.), Overland Flow: Hydraulics and Erosion Mechanics. UCL Press, London, UK. pp 69–88.

    Google Scholar 

  • DWRSP (Department of Water Resources of Shanxi Province) (2010) Handbook of hydrological calculation of Shanxi Province. Yellow River Conservancy Press, Zhengzhou, China. pp 136–137. (In Chinese)

    Google Scholar 

  • Esteves M, Faucher X, Galle S, et al. (2000) Overland flow and infiltration modelling for small plots during unsteady rain: numerical results versus observed values. Journal of Hydrology 228 (3-4): 265–282. DOI:10.1016/S0022-1694 (00)00155-4

    Article  Google Scholar 

  • Fiedler FR, Ramirez JA (2000) A numerical method for simulating discontinuous shallow flow over an infiltrating surface. International Journal for Numerical Methods in Fluids 32 (2): 219–239. DOI:10.1002/(SICI)1097-0363 (20000130)32:2<219::AID-FLD936>3.0.CO;2-J

    Article  Google Scholar 

  • Goovaerts P (2000) Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall. Journal of Hydrology 228 (1–2): 113–129. DOI:10.1016/S0022-1694(00)00144-X

    Article  Google Scholar 

  • Green WH, Ampt G (1911) Studies on soil physics, part 1: the flow of air and water through soils. Journal of Agricultural Science 4 (1): 1–24.

    Article  Google Scholar 

  • Hapuarachchi HAP, Wang QJ, Pagano TC (2011) A review of advances in flash flood forecasting. Hydrological Processes 25 (18): 2771–2784. DOI:10.1002/hyp.8040

    Article  Google Scholar 

  • Huang W, Cao Z, Yue Z, et al. (2012) Coupled modelling of flood due to natural landslide dam breach. Proceedings of the ICE -Water Management 165 (10): 525–542. DOI:10.1680/wama.12.00017

    Article  Google Scholar 

  • Huang W, Cao Z, Carling P, et al. (2013) 2D modelling of megaflood due to glacier dam-break in Altai Mountains, Southern Siberia. Proceedings of 35th IAHR, September 8-13, Chengdu, China.

    Google Scholar 

  • Hunter NM, Bates PD, Horritt MS, et al. (2007) Simple spatially-distributed models for predicting flood inundation: A review. Geomorphology 90 (3–4): 208–225. DOI:10.1016/ j.geomorph.2006.10.021

    Article  Google Scholar 

  • Iwagaki Y (1955) Fundamental Studies on the Runoff by Characteristics. Bulletins-Disaster Prevention Research Institute, Kyoto University. Vol 10, pp 1–25.

    Google Scholar 

  • Jain MK, Kothyari UC, Ranga Raju KG (2004) A GIS based distributed rainfall–runoff model. Journal of Hydrology 299 (1–2): 107–135. DOI:10.1016/j.jhydrol.2004.04.024

    Article  Google Scholar 

  • Javelle P, Fouchier C, Arnaud P, et al. (2010) Flash flood warning at ungauged locations using radar rainfall and antecedent soil moisture estimations. Journal of Hydrology 394 (1–2): 267–274. DOI: 10.1016/j.jhydrol.2010.03.032

    Article  Google Scholar 

  • Jonkman SN (2005) Global perspectives on loss of human life caused by floods. Natural Hazards 34 (2): 151–175. DOI: 10.1007/s11069-004-8891-3

    Article  Google Scholar 

  • Kale RV, Sahoo B (2011) Green-Ampt infiltration models for varied field conditions: a revisit. Water Resources Management 25 (14): 3505–3536. DOI:10.1007/s11269-011-9868-0

    Article  Google Scholar 

  • Kim J, Warnock A, Ivanov VY, et al. (2012) Coupled modeling of hydrologic and hydrodynamic processes including overland and channel flow. Advances in Water Resources 37 (0): 104–126. DOI:10.1016/j.advwatres.2011.11.009

    Article  Google Scholar 

  • Li J, Heap AD (2011) A review of comparative studies of spatial interpolation methods in environmental sciences: Performance and impact factors. Ecological Informatics 6 (3–4): 228–241. DOI:10.1016/j.ecoinf.2010.12.003

    Article  Google Scholar 

  • Liang Q, Marche F (2009) Numerical resolution of wellbalanced shallow water equations with complex source terms. Advances in Water Resources 32 (6): 873–884. DOI: 10.1016/ j.advwatres.2009.02.010

    Article  Google Scholar 

  • Liao CB, Wu MS, Liang SJ (2007) Numerical simulation of a dam break for an actual river terrain environment. Hydrological Processes 21 (4): 447–460. DOI: 10.1002/hyp.6242

    Article  Google Scholar 

  • Liu QQ, Singh VP (2004) Effect of microtopography, slope length and gradient, and vegetative cover on overland flow through simulation. Journal of Hydrologic Engineering 9 (5): 375–382. DOI:10.1061/asce/1084-0699/2004/9:5/375

    Article  Google Scholar 

  • Martina M, Todini E, Libralon A (2006) A Bayesian decision approach to rainfall thresholds based flood warning. Hydrology and Earth System Sciences 10 (3): 413–426. DOI: 10.5194/hess-10-413-2006

    Article  Google Scholar 

  • Miyata S, Kosugi K, Nishi Y, et al. (2010) Spatial pattern of infiltration rate and its effect on hydrological processes in a small headwater catchment. Hydrological Processes 24 (5): 535–549. DOI: 10.1002/hyp.7549

    Article  Google Scholar 

  • Ogden FL, Julien PY (1993) Runoff sensitivity to temporal and spatial rainfall variability at runoff plane and small basin scales. Water Resources Research 29 (8): 2589–2597. DOI: 10.1029/93WR00924

    Article  Google Scholar 

  • Oreskes N, Shrader-Frechette K, Belitz K (1994) Verification, validation, and confirmation of numerical models in the earth sciences. Science 263 (5147): 641–646.

    Article  Google Scholar 

  • Pan JJ, Cao ZX, Wang XK, et al. (2012) Comparative study of simplified and full hydrodynamic models for flash floods. Journal of Sichuan University (Engineering Science Edition) 44 (Supp.1): 1–6. (In Chinese)

    Google Scholar 

  • Parajuli PB, Nelson NO, Frees LD, et al. (2009) Comparison of AnnAGNPS and SWAT model simulation results in USDACEAP agricultural watersheds in south-central Kansas. Hydrological Processes 23 (5): 748–763. DOI: 10.1002/hyp.7174

    Article  Google Scholar 

  • Philipp A, Grundmann J (2013) Integrated modeling system for flash flood routing in ephemeral rivers under the influence of groundwater recharge dams. Journal of Hydraulic Engineering 139 (12): 1234–1246. DOI:10.1061/(ASCE)HY.1943-7900.0000766

    Article  Google Scholar 

  • Reed S, Schaake J, Zhang Z (2007) A distributed hydrologic model and threshold frequency-based method for flash flood forecasting at ungauged locations. Journal of Hydrology 337 (3–4): 402–420. DOI: 10.1016/j.jhydrol.2007.02.015

    Article  Google Scholar 

  • Reid I, Laronne JB, Powell DM (1998) Flash-flood and bedload dynamics of desert gravel-bed streams. Hydrological Processes 12: 543–557. DOI: 10.1002/(SICI)1099-1085 (1998 0330)12:4<543::AID-HYP593>3.0.CO;2-C

    Article  Google Scholar 

  • SFCDRH (State Flood Control and Drought Relief Headquarters and Ministry of Water Resources, China) (2012) Bulletin of flood and drought disasters in China 2011. China Water Power Press, Beijing, China. (In Chinese)

    Google Scholar 

  • Toro EF (2001) Shock-capturing methods for free-surface shallow flows, John Wiley, England.

    Google Scholar 

  • Wang M (2010) Study on structure of collapsible loess in China. PhD thesis, Taiyuan University of Technology, Taiyuan, China. (In Chinese)

    Google Scholar 

  • Warnock A, Kim J, Ivanov V, et al. (2014) Self-Adaptive Kinematic-Dynamic Model for Overland Flow. Journal of Hydraulic Engineering 140 (2): 169–181. DOI: 10.1061/ (asce) hy.1943-7900.0000815

    Article  Google Scholar 

  • Woolhiser D A, Liggett JA (1967) Unsteady, one-dimensional flow over a plane—the rising hydrograph. Water Resources Research 3 (3): 753–771.

    Article  Google Scholar 

  • Xia J, Falconer RA, Lin B, et al. (2011) Numerical assessment of flood hazard risk to people and vehicles in flash floods. Environmental Modelling & Software 26 (8): 987–998. DOI: 10.1016/j.envsoft.2011.02.017

    Article  Google Scholar 

  • Zhu D, Ren Q, Xuan Y, Chen Y, Cluckie ID (2013) An effective depression filling algorithm for DEM-based 2-D surface flow modelling. Hydrology and Earth System Sciences 17 (2): 495–505. DOI: 10.5194/hess-17-495-2013

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi-xian Cao.

Additional information

http://orcid.org/0000-0002-9235-3369

http://orcid.org/0000-0001-5161-385X

http://orcid.org/0000-0003-2714-3223

http://orcid.org/0000-0003-2265-8228

http://orcid.org/0000-0001-6905-8567

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Cao, Zx., Qi, Wj. et al. Full 2D hydrodynamic modelling of rainfall-induced flash floods. J. Mt. Sci. 12, 1203–1218 (2015). https://doi.org/10.1007/s11629-015-3466-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11629-015-3466-1

Keywords

Navigation