Skip to main content
Log in

The extracts from Panax quinquefolium shoots derived from somatic embryos accumulate ginsenosides and have the antioxidant properties

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The present study was carried out to obtain somatic embryo-derived shoot cultures of Panax quinquefolium (American ginseng) and to examine the ginsenoside and total phenolic content (TPC) of these cultures. HPLC analysis revealed that the levels of six ginsenosides measured in shoot cultures totaled 9.76 mg g−1 DW. TPC content was investigated using the Folin–Ciocalteu method and interpreted as gallic acid equivalents (GAE). The extracts from shoot cultures contained twice the level of TPC (12.75 mg GAE g−1 of extract) found in aerial parts of field-cultivated P. quinquefolium (6.36 mg GAE g−1 of extract). Antioxidant activity obtained from various plant materials (embryogenic callus, in vitro-grown shoots and aerial parts of field plants) was evaluated using two in vitro assays: ABTS (scavenging of free radicals) and ferric reducing antioxidant power (FRAP). The methanolic extracts from somatic embryo-derived shoots demonstrated 43% more antioxidant activity than did the extracts from the aerial parts of P. quinquefolium plants from field cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Asaka I, Ii I, Hirotani M, Asada H, Furuya T (1994) Ginsenoside contents of plantlets regenerated from Panax ginseng embryoids. Phytochemistry 36:61–63

    Article  CAS  Google Scholar 

  • Choi YE, Kim JW, Soh WJ (1997) Somatic embryogenesis and plant regeneration from suspension cultures of Acanthopanax koreanum Nakai. Plant Cell Rep 17:84–88

    Article  CAS  Google Scholar 

  • Choi YE, Yang DC, Park JC, Soh WY, Choi KT (1998) Regenerative ability of somatic single and multiple embryos from cotyledons of Korean ginseng on hormone-free medium. Plant Cell Rep 17:544–551

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  CAS  PubMed  Google Scholar 

  • Guleria S, Tiku AK, Singh G, Koul A, Gupta S, Rana S (2013) In vitro antioxidant activity and phenolic contents in methanolic extracts from medicinal plants. J Plant Biochem Biotechnol 22:9–15

    Article  CAS  Google Scholar 

  • Henríquez C, López-Alarcón C, Gómez M, Lutz M, Speisky H (2011) Time-dependence of ferric reducing antioxidant power (FRAP) index in Chilean apples and berries. Archivos Latinoamericanos De Nutrición 61:323–332

    PubMed  Google Scholar 

  • Hwang IG, Kim HY, Joung EM, Woo KS, Jeong JH, Yu KW, Lee J, Jeong HS (2010) Changes in ginsenosides and antioxidant activity of Korean ginseng (Panax ginseng C.A. Meyer) with heating temperature and pressure. Food Sci Biotechnol 19:941–949

    Article  CAS  Google Scholar 

  • Jung CH, Seong HM, Choi IW, Cho HY (2005) Antioxidant activities of cultivated and wild Korean ginseng leaves. Food Chem 92:535–540

    Article  CAS  Google Scholar 

  • Kim MJ, Kim JH, Kwak HK (2014a) Antioxidant effects of cranberry powder in lipopolysaccharide treated hypercholesterolemic rats. Prev Nutr Food Sci 19:75–81. doi:10.3746/pnf.2014.19.2.075

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim YJ, Jeon JN, Jang MG, Oh JY, Kwon WS, Jung SK, Yang DC (2014b) Ginsenoside profiles and related gene expression during foliation in Panax ginseng Meyer. J Ginseng Res 38:66–72

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kochan E, Szymańska G, Szymczyk P (2014) Effect of sugar concentration on ginsenoside biosynthesis in hairy root cultures of Panax quinquefolium cultivated in shake flasks and nutrient sprinkle bioreactor. Acta Physiol Plant 36:613–619

    Article  CAS  Google Scholar 

  • Lee TK, O’Brien KF, Wang W, Johnke RM, Sheng C, Benhabib SM, Wang T, Allison RR (2010) Radioprotective effect of American ginseng on human lymphocytes at 90 minutes postirradiation: a study of 40 cases. J Altern Complement Med 16:561–567. doi:10.1089/acm.2009.0590

    Article  PubMed Central  PubMed  Google Scholar 

  • Li X, Yan YZ, Jin X, Kim YK, Uddin MR, Kim YB, Bae H, Kim YC, Lee SW, Park SU (2012) Ginsenoside content in the leaves and roots of Panax ginseng at different ages. Life Sci J 9:679–683

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pharmacopoeia of the People’s Republic of China (2005) English Ed. Stationery Office Books, London. ISBN 9780119896633

    Google Scholar 

  • Pulido R, Bravo L, Sauro-Calixto F (2000) Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing/antioxidant power assay. J Agric Food Chem 48:3396–3402

    Article  CAS  PubMed  Google Scholar 

  • Punja ZK, Feeney M, Schluter C, Tautorus T (2004) Multiplication and germination of somatic embryos of American ginseng derived from suspension cultures and biochemical and molecular analyses of plantlets. In Vitro Cell Dev Biol Plant 40:329–338

    Article  CAS  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic Biol Med 26:1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Searels JM, Keen KD, Horton JL, Clarke HD, Ward JR (2013) Comparing ginsenoside production in leaves and roots of wild American ginseng (Panax quinquefolius). Am J Plant Sci 4:1252–1259. doi:10.4236/ajps.2013.46154

    Article  Google Scholar 

  • Singleton V, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Tang W (2000) High-frequency plant regeneration via somatic embryogenesis and organogenesis and in vitro flowering of regenerated plantlets in Panax ginseng. Plant Cell Rep 19:727–732

    Article  CAS  Google Scholar 

  • Tirajoh A, Kyung TS, Punja ZK (1998) Somatic embryogenesis and plantlet regeneration in American ginseng (Panax quinquefolium L.). In Vitro Cell Dev Biol Plant 34:203–211

    Article  Google Scholar 

  • Uchedu EE, Palliyath G, Brown DCW, Saxena PK (2011) In vitro propagation of North American ginseng (Panax quinquefolius L.). In Vitro Cell Dev Biol Plant 47:710–718

    Article  Google Scholar 

  • Wang AS (1990) Callus induction and plant regeneration of American ginseng. HortSci 25:571–572

    CAS  Google Scholar 

  • Wang X, Proctor JTA, Kakuda Y, Raj SK, Saxena PK (1999) Ginsenosides in American ginseng: comparison of in vitro derived and field-grown plant tissue. J Herbs Spices Med Plants 6(3):1–10

    Article  Google Scholar 

  • Xie JT, Wang CZ, Ni M, Wu JA, Mehendale SR, Aung HH, Foo A, Yuan CS (2007) American ginseng berry juice intake reduces blood glucose and body weight in ob/ob mice. J Food Sci 72:S590–S594

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yuan CS, Wang CZ, Wicks SM, Qi LW (2010) Chemical and pharmacological studies of saponins with a focus on American ginseng. J Ginseng Res 34:160–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhang YC, Li G, Jiang C, Yang B, Yang HJ, Xu HY, Huang LQ (2014) Tissue-specific distribution of ginsenosides in different aged ginseng and antioxidant activity of ginseng leaf. Molecules 19:17381–17399. doi:10.3390/molecules191117381

    Article  PubMed  Google Scholar 

  • Zhao S, Brown DCW (2006) High efficiency plant production of North American ginseng via somatic embryogenesis from cotyledon explants. Plant Cell Rep 25:166–173

    Article  Google Scholar 

Download references

Acknowledgments

The project was financed by the Medical University of Lodz from research grant no. 502-13-754 and by the State Committee for Scientific Research grant no. 3PO5F01523.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Kochan.

Additional information

Editor: David Duncan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kochan, E., Szymańska, G. & Grzegorczyk-Karolak, I. The extracts from Panax quinquefolium shoots derived from somatic embryos accumulate ginsenosides and have the antioxidant properties. In Vitro Cell.Dev.Biol.-Plant 51, 696–701 (2015). https://doi.org/10.1007/s11627-015-9730-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-015-9730-9

Keywords

Navigation