Skip to main content

Advertisement

Log in

Some ferrocenyl chalcones as useful candidates for cancer treatment

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Although knowledge of cancer management is extensive, mortality is not currently declining in this area. It is therefore important to implement a long-term strategy that would aim to prevent these serious diseases. Ferrocene-related organometallic compounds are promising candidates for design of new drugs since they can exhibit much greater biological activity than their phenyl analogs. In our work, we focused on investigating the cytotoxic and antiproliferative effects of five ferrocenyl derivatives toward selected tumor cell lines. We found that some of these substances significantly reduced Jurkat cell survival and, to a lesser extent, that of the HeLa, MCF7, A549, and MDA cells. Long-term treatment of HeLa cell cultures with these agents resulted in a significant blockade of formation of tumor cell colonies. We found that one of the mechanisms of action of the compounds is likely to display an effect on the redox state of the mitochondria at a final concentration of 10−4 and 10−5 mol l−1. Of the compounds tested, the indanonyl ferrocene derivative (C) was the most effective, especially via glutathione depletion. Based on the obtained results, it can be concluded that synthetic substances containing iron have potential antitumor activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Similar content being viewed by others

References

  • Attar S, O'Brien Z, Alhaddad H, Golden ML, Calderón-Urrea A (2011) Ferrocenyl chalcones versus organic chalcones: a comparative study of their nematocidal activity. Bioorg Med Chem 19:2055–2073

    Article  CAS  PubMed  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BA (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad Sci U S A 87:1620–1624

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Beda N, Nedospasov A (2005) A spectrophotometric assay for nitrate in an excess of nitrite. Nitric Oxide 13:93–97

    Article  CAS  PubMed  Google Scholar 

  • Carlberg I, Mannervik B (1985) Glutathione reductase. Methods Enzymol 113:484–485

    Article  CAS  PubMed  Google Scholar 

  • Cochemé HM, Murphy MPJ (2008) Complex I is the major site of mitochondrial superoxide production by paraquat. Biol Chem 283:1786–1798

    Article  Google Scholar 

  • Cortés R, Tarrado-Castellarnau M, Talancón D, López C, Link W, Ruiz D, Centelles JJ, Quirante J, Cascante M (2014) A novel cyclometallated Pt(II)-ferrocene complex induces nuclear FOXO3a localization and apoptosis and synergizes with cisplatin to inhibit lung cancer cell proliferation. Metallomics 6:622–633

    Article  PubMed  Google Scholar 

  • DeBerardinis RJ, Lum JJ, Hatzivassiliou G, Thompson CB (2008) The biology of cancer: metabolic reprogramming fuels cell growth and proliferation. Cell Metab 7:11–20

    Article  CAS  PubMed  Google Scholar 

  • Ferle-Vidović A, Poljak-Blazi M, Rapić V, Skare D (2000) Ferrocenes (F168, F169) and fero-sorbitol-citrate (FSC): potential anticancer drugs. Cancer Biother Radiopharm 15:617–624

    Article  PubMed  Google Scholar 

  • Fernández-Vizzara E, Ferrín G, Pérez-Martos A, Fernández-Silva P, Zeviani M, Enríquez JA (2010) Isolation of mitochondria for biogenetical studies: An update. Mitochondrion 10:253–262

    Article  Google Scholar 

  • Flohe L, Gunzler WA (1984) Assay of glutathione peroxidase. Methods Enzymol 105:114–121

    Article  CAS  PubMed  Google Scholar 

  • Floreani M, Petrone M, Debetto P, Palatini P (1997) A comparison between different methods for the determination of reduced and oxidized glutathione in mammalian tissues. Free Radic Res 26:449–455

    Article  CAS  PubMed  Google Scholar 

  • Freedman JE, Frei B, Welch GN, Loscalzo J (1995) Glutathione peroxidase potentiates the inhibition of platelet function by S-nitrosothiols. J Clin Invest 96:394–400

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gasser G, Ott I, Metzler-Nolte N (2011) Organometallic anticancer compounds. J Med Chem 54:3–25

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Goitia H, Nieto Y, Villacampa MD, Kasper C, Laguna A, Gimeno MC (2013) Antitumoral gold and silver complexes with ferrocenyl-amide phosphines. Organometallics 32:6069–6078

    Article  CAS  Google Scholar 

  • Guzmán C, Bagga M, Kaur A, Westermarck J, Abankwa D (2014) ColonaArea: aAn imageJ plugin to automatically quantify colony formation in clonogenic assays. PLoS One 9, e92444

    Article  PubMed Central  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM, Aruoma OI (1987) The deoxyribose method: a simple "test tube" assay for determination of rate constants for reactions of hydroxyl radicals. Anal Biochem 165:215–219

  • Han D, Antunes F, Canali R, Rettori D, Cadenas E (2003) Voltage-dependent anion channels control the release of the superoxide anion from mitochondria to cytosol. J Biol Chem 278:5557–5563

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Sato EF, Nishikawa M, Park AM, Kira Y, Imada I, Utsumi K (2003) Mitochondrial generation of reactive oxygen species and its role in aerobic life. Curr Med Chem 10:2495–2505

    Article  CAS  PubMed  Google Scholar 

  • Jaouen G, Top S, Vessières A, Leclercq G, McGlinchey MJ (2004) The first organometallic selective estrogen receptor modulators (SERMs) and their relevance to breast cancer. Curr Med Chem 11:2505–2517

    Article  CAS  PubMed  Google Scholar 

  • Kueng W, Silber E, Eppenberger U (1989) Quantification of cells cultured on 96-well plates. Anal Biochem 182:16–19

    Article  CAS  PubMed  Google Scholar 

  • Laursen JB, Somers M, Kurz S, McCann L, Warnholtz A, Freeman BA, Tarpey M, Fukai T, Harrison DG (2001) Endothelial regulation of vasomotion in ApoEapoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation 103:1282–1288

    Article  CAS  PubMed  Google Scholar 

  • Li X (2012) Improved pyrogallol autoxidation method: a reliable and cheap superoxide-scavenging assay suitable for all antioxidants. J Agric Food Chem 60:6418–6424

    Article  CAS  PubMed  Google Scholar 

  • Lipinski B (2011) Hydroxyl radical and its scavengers in health and disease. Oxid Med Cell Longev 2011:809696

    PubMed Central  PubMed  Google Scholar 

  • Mahal HS, Kapoor S, Satpati AK, Mukherjee T (2005) Radical scavenging and catalytic activity of metal-phenolic complexes. J Phys Chem B 109:24197–24202

    Article  CAS  PubMed  Google Scholar 

  • Marchi S, Giorgi C, Suski JM, Agnoletto C, Bononi A, Bonora M, De Marchi E, Missiroli S, Patergnani S, Poletti F, Rimessi A, Duszynski J, Wieckowski MR, Pinton P (2012) Mitochondria-Ros crosstalk in the control of cell death and ageing. J Signal Transduction 2012:1–17

  • Michard Q, Jaouen G, Vessieres A, Bernard BA (2008) Evaluation of cytotoxic properties of organometallic ferrocifens on melanocytes, primary and metastatic melanoma cell lines. J Inorg Biochem 102:1980–1985

    Article  CAS  PubMed  Google Scholar 

  • Mojzis J, Varinska L, Mojzisova G, Kostova I, Mirossay L (2008) Antiangiogenic effects of flavonoids and chalcones. Pharmacol Res 57:259–265

    Article  CAS  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65:55–63

    Article  CAS  PubMed  Google Scholar 

  • Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochem J 417:1–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nikula KJ, Sun JD, Barr EB, Bechtold WE, Haley PJ, Benson JM, Eidson AF, Burt DG, Dahl AR, Henderson RF, Chang IY, Mauderly JL, Dieter MP, Hobbs CH (1993) Thirteen-week, repeated inhalation exposure of F344/N rats and B6C3F1 mice to ferrocene. Fundam Appl Toxicol 21:127–139

    Article  CAS  PubMed  Google Scholar 

  • Olorunniji F, Iniaghe MO, Adebayo JO, Malomo SO, Adediran SA (2009) Mechanism-based inhibition of myeloperoxidase by hydrogen peroxide: enhancement of inactivation rate by organic donor substrates. Open Enzyme Inhib J 2:28–35

    Article  CAS  Google Scholar 

  • Osella D, Ferrali M, Zanello P, Laschi F, Fontani M, Nervi M, Cavigiolio G (2000) On the mechanism of the antitumor activity of ferrocenium derivatives. Inorg Chim Acta 306:42–48

    Article  CAS  Google Scholar 

  • Perjesi P, Das U, De Clercq E, Balzarini J, Kawase M, Sakagami H, Stables JP, Lorand T, Zs R, Dimmock JR (2008) Design, synthesis and antiproliferative activity of some 3-benzylidene-2,3-dihydro-1-benzopyran-4-ones which display selective toxicity for malignant cells. Eur J Med Chem 43:839–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Perjesi P, Takacs-Novak K, Zs R, Sohar P, Bozak RE, Allen TM (2012) (E)-2-Benzylidenebenzocyclanones: Part IX. Study on ferrocenes, Part 24. Comparison of structure, logP and P388 cytotoxicity of some phenyl and ferrocenyl cyclic chalcone analogues. Application of RP-TLC for logP determination of the ferrocenyl analogues. Cent Eur J Chem 10:1500–1505

    Article  CAS  Google Scholar 

  • Pigeolet E, Remacle J (1991) Susceptibility of glutathione peroxidase to proteolysis after oxidative alteration by peroxides and hydroxyl radicals. Free Radic Biol Med 11:191–195

    Article  CAS  PubMed  Google Scholar 

  • Rozmer Z, Perjesi P (2014) Naturally occurring chalcones and their biological activities. Phytochem Rev. doi:10.1007/s11101-014-9387-8

    Google Scholar 

  • Schafer FQ, Buettner GR (2001) Redox environment of the cell as viewed through the redox state of the glutathione disulphide/glutathione couple. Free Radic Biol Med 30:1191–1212

    Article  CAS  PubMed  Google Scholar 

  • Schatzschneider U, Metzler-Nolte N (2006) New principles in medicinal organometallic chemistry. Angew Chem Int Ed Engl 45:1504–1507

    Article  CAS  PubMed  Google Scholar 

  • Sharma V, Kumar V, Kumar P (2013) Heterocyclic chalcone analogues as potential anticancer agents. Anti Cancer Agents Med Chem 13:422–432

    CAS  Google Scholar 

  • Sies H, Sharov VS, Klotz L-O, Briviba K (1997) Glutathione peroxidase protects against peroxynitrite-mediated oxidations. A new function for selenoproteins as peroxynitrite reductase. J Biol Chem 272:27812–27817

    Article  CAS  PubMed  Google Scholar 

  • Smit FJ, N'da DD (2014) Synthesis, in vitro antimalarial activity and cytotoxicity of novel 4-aminoquinolinyl-chalcone amides. Bioorg Med Chem 22:1128–1138

    Article  CAS  PubMed  Google Scholar 

  • Sohar P, Csampai A, Perjesi P (2003) Synthesis and structure of some E-ferrocenemethylenecycloalkanones and their benzylidene analogs. ARKIVOC 5:114–120

    Google Scholar 

  • Sohar P, Perjesi P, Törnroos KW, Husebye S, Vértes A, Gy V, Bozak RE (2000) Study on ferrocenes, part 7. E-ferrocenemethylene-1-benzocyclanones. Synthesis, stereostructure, NMR, X-ray, and Mössbauer spectroscopic investigation. J Mol Struct 524:297–304

    Article  CAS  Google Scholar 

  • Swarts JC, Swarts DM, Maree DM, Neuse EW, La Madeleine C, Van Lier J (2001) Polyaspartamides as water-soluble drug carriers. Part 1 Antineoplastic acitivity of ferrocene-containing polyaspartamide conjugates. Anticancer Res 21:2033–2038

    CAS  PubMed  Google Scholar 

  • Wu X, Tiekink ER, Kostetski I, Kocherginsky N, Tan AL, Khoo SB, Wilairat P, Go ML (2006) Antiplasmodial activity of ferrocenyl chalcones: investigations into the role of ferrocene. Eur J Pharm Sci 27:175–187

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the grant VEGA 1/0751/12 and VEGA 1/1236/12 and partially supported by the Agency of the Slovak Ministry of Education for the Structural Funds of the EU, under project ITMS: 26220220104 (15%), ITMS: 26220120058 (15%), and ITMS: 26220220152 (15%).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mojžišová Gabriela.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Janka, V., Žatko, D., Ladislav, V. et al. Some ferrocenyl chalcones as useful candidates for cancer treatment. In Vitro Cell.Dev.Biol.-Animal 51, 964–974 (2015). https://doi.org/10.1007/s11626-015-9919-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-015-9919-6

Keywords

Navigation