Skip to main content

Advertisement

Log in

Synergistic effects of FGF-2 and Activin A on early neural differentiation of human pluripotent stem cells

  • Report
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Neural differentiation is an important target of human embryonic stem cells, which provide a source for cell-based therapy, developmental biology, and pharmaceutical research. Previous studies revealed that inhibition of the bone morphogenetic protein is required for neural induction from human embryonic stem cells. On the contrary, the functions of fibroblast growth factors and Activin/Nodal signaling are controversial. Fibroblast growth factor-2 and Activin/Nodal pathways exert divergent influences on human embryonic stem cell concerning the maintenance of both pluripotency and cellular differentiation. We hypothesized that the combination of fibroblast growth factor-2 and Activin A at various concentrations synergistically exerts diverse effects on cell differentiation. To determine the effects of fibroblast growth factor-2 and Activin A on cellular differentiation into neural lineages, we examined the expression of neural differentiation markers in human embryonic stem cells treated with fibroblast growth factor-2 and/or Activin A at various concentrations in a growth factor-defined serum-free medium in short-term culture. In this study, we provide evidence that fibroblast growth factor-2 and Activin A synergistically regulated the initiation of human embryonic stem cell differentiation into neural cell lineages even though human embryonic stem cells autonomously differentiate into neural cell lineages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Aihara Y, Hayashi Y, Hirata M, Ariki N, Shibata S, Nagoshi N, Nakanishi M, Ohnuma K, Warashina M, Michiue T, Uchiyama H, Okano H, Asashima M, Furue MK (2010) Induction of neural crest cells from mouse embryonic stem cells in a serum-free monolayer culture. Int J Dev Biol 54:1287–1294

    Article  CAS  PubMed  Google Scholar 

  • Amit M, Carpenter MK, Inokuma MS, Chiu CP, Harris CP, Waknitz MA, Itskovitz-Eldor J, Thomson JA (2000) Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev Biol 227:271–278

    Article  CAS  PubMed  Google Scholar 

  • Arnold JT, Kaufman DG, Seppala M, Lessey BA (2001) Endometrial stromal cells regulate epithelial cell growth in vitro: a new co-culture model. Hum Reprod 16:836–845

    Article  CAS  PubMed  Google Scholar 

  • Axell MZ, Zlateva S, Curtis M (2009) A method for rapid derivation and propagation of neural progenitors from human embryonic stem cells. J Neurosci Methods 184:275–284

    Article  PubMed  Google Scholar 

  • Barnes D, McKeehan WL, Sato GH (1987) Cellular endocrinology: integrated physiology in vitro. In Vitro Cell Dev Biol 23:659–662

    Article  CAS  PubMed  Google Scholar 

  • Chambers SM, Fasano CA, Papapetrou EP, Tomishima M, Sadelain M, Studer L (2009) Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 27:275–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chin JH, Shiwaku H, Goda O, Komuro A, Okazawa H (2009) Neural stem cells express Oct-3/4. Biochem Biophys Res Commun 388:247–251

    Article  CAS  PubMed  Google Scholar 

  • Dvorak P, Dvorakova D, Koskova S, Vodinska M, Najvirtova M, Krekac D, Hampl A (2005) Expression and potential role of fibroblast growth factor 2 and its receptors in human embryonic stem cells. Stem Cells 23:1200–1211

    Article  CAS  PubMed  Google Scholar 

  • Furue M, Asashima M (2004) 46. Isolation of pluripotential stem cells from Xenopus embryos. In: Lanza R (ed) Handbook of stem cells. Academic, San Diego, pp 483–492

    Chapter  Google Scholar 

  • Furue M, Myoishi Y, Fukui Y, Ariizumi T, Okamoto T, Asashima M (2002) Activin A induces craniofacial cartilage from undifferentiated Xenopus ectoderm in vitro. Proc Natl Acad Sci U S A 99:15474–15479

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Furue M, Okamoto T, Hayashi Y, Okochi H, Fujimoto M, Myoishi Y, Abe T, Ohnuma K, Sato GH, Asashima M, Sato JD (2005) Leukemia inhibitory factor as an anti-apoptotic mitogen for pluripotent mouse embryonic stem cells in a serum-free medium without feeder cells. In Vitro Cell Dev Biol Anim 41:19–28

    Article  CAS  PubMed  Google Scholar 

  • Furue MK, Na J, Jackson JP, Okamoto T, Jones M, Baker D, Hata R, Moore HD, Sato JD, Andrews PW (2008) Heparin promotes the growth of human embryonic stem cells in a defined serum-free medium. Proc Natl Acad Sci U S A 105:13409–13414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gaspard N, Vanderhaeghen P (2010) Mechanisms of neural specification from embryonic stem cells. Curr Opin Neurobiol 20:37–43

    Article  CAS  PubMed  Google Scholar 

  • Greber B, Coulon P, Zhang M, Moritz S, Frank S, Muller-Molina AJ, Arauzo-Bravo MJ, Han DW, Pape HC, Scholer HR (2011) FGF signalling inhibits neural induction in human embryonic stem cells. EMBO J 30:4874–4884

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hayashi Y, Furue MK, Okamoto T, Ohnuma K, Myoishi Y, Fukuhara Y, Abe T, Sato JD, Hata R, Asashima M (2007) Integrins regulate mouse embryonic stem cell self-renewal. Stem Cells 25:3005–3015

    Article  CAS  PubMed  Google Scholar 

  • Ilieva M, Dufva M (2013) SOX2 and OCT4 mRNA-expressing cells, detected by molecular beacons, localize to the center of neurospheres during differentiation. PLoS ONE 8, e73669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Inamura M, Kawabata K, Takayama K, Tashiro K, Sakurai F, Katayama K, Toyoda M, Akutsu H, Miyagawa Y, Okita H, Kiyokawa N, Umezawa A, Hayakawa T, Furue MK, Mizuguchi H (2011) Efficient generation of hepatoblasts from human ES cells and iPS cells by transient overexpression of homeobox gene HEX. Mol Ther 19:400–407

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kinehara M, Kawamura S, Tateyama D, Suga M, Matsumura H, Mimura S, Hirayama N, Hirata M, Uchio-Yamada K, Kohara A, Yanagihara K, Furue MK (2013) Protein kinase C regulates human pluripotent stem cell self-renewal. PLoS One 8, e54122

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kusuda Furue M, Tateyama D, Kinehara M, Na J, Okamoto T, Sato JD (2010) Advantages and difficulties in culturing human pluripotent stem cells in growth factor-defined serum-free medium. In Vitro Cell Dev Biol 46:573–576

    Article  Google Scholar 

  • Lee SH, Jeyapalan JN, Appleby V, Noor M, Azri D, Sottile V, Scotting PJ (2010) Dynamic methylation and expression of Oct4 in early neural stem cells. J Anat 217:203–213

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lupo G, Novorol C, Smith JR, Vallier L, Miranda E, Alexander M, Biagioni S, Pedersen RA, Harris WA (2013) Multiple roles of Activin/Nodal, bone morphogenetic protein, fibroblast growth factor and Wnt/β-catenin signalling in the anterior neural patterning of adherent human embryonic stem cell cultures. Open Biol 3:120167

    Article  PubMed Central  PubMed  Google Scholar 

  • Massa D, Pillai R, Monni E, Kokaia Z, Diana A (2012) Expression analysis of pluripotency-associated genes in human fetal cortical and striatal neural stem cells during differentiation. Transl Neurosci 3:242–248

    Article  Google Scholar 

  • Munoz-Sanjuan I, Brivanlou AH (2002) Neural induction, the default model and embryonic stem cells. Nat Rev Neurosci 3:271–280

    Article  CAS  PubMed  Google Scholar 

  • Na J, Furue MK, Andrews PW (2010) Inhibition of ERK1/2 prevents neural and mesendodermal differentiation and promotes human embryonic stem cell self-renewal. Stem Cell Res 5:157–169

    Article  CAS  PubMed  Google Scholar 

  • Okuda T, Tagawa K, Qi ML, Hoshio M, Ueda H, Kawano H, Kanazawa I, Muramatsu M, Okazawa H (2004) Oct-3/4 repression accelerates differentiation of neural progenitor cells in vitro and in vivo. Brain Res Mol Brain Res 132:18–30

    Article  CAS  PubMed  Google Scholar 

  • Sato JD, Barnes DW, Hayashi I, Hayashi J, Hoshi H, Kawamoto T, Matsuda R, McKeehan WL, Matsuzaki K, Okamoto T, Serrero G, Sussman DJ, Kan M (2002) Specific cell types and their requirements. In: Davis JM (ed) Basic cell culture: a practical approach. Oxford University Press, Oxford, pp 227–274

    Google Scholar 

  • Shiraki N, Yoshida T, Araki K, Umezawa A, Higuchi Y, Goto H, Kume K, Kume S (2008) Guided differentiation of embryonic stem cells into Pdx1-expressing regional-specific definitive endoderm. Stem Cells 26:874–885

    Article  CAS  PubMed  Google Scholar 

  • Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  PubMed  Google Scholar 

  • Vallier L, Alexander M, Pedersen RA (2005) Activin/nodal and FGF pathways cooperate to maintain pluripotency of human embryonic stem cells. J Cell Sci 118:4495–4509

    Article  CAS  PubMed  Google Scholar 

  • Vallier L, Touboul T, Chng Z, Brimpari M, Hannan N, Millan E, Smithers LE, Trotter M, Rugg-Gunn P, Weber A, Pedersen RA (2009) Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLoS One 4, e6082

    Article  PubMed Central  PubMed  Google Scholar 

  • Vazin T, Freed WJ (2010) Human embryonic stem cells: derivation, culture, and differentiation: a review. Restor Neurol Neurosci 28:589–603

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang JZ, Ho AL, Ajonuma LC, Lam SY, Tsang LL, Tang N, Rowlands DK, Gou YL, Chung YW, Chan HC (2003) Differential effects of Matrigel and its components on functional activity of CFTR and ENaC in mouse endometrial epithelial cells. Cell Biol Int 27:543–548

    Article  CAS  PubMed  Google Scholar 

  • Ying QL, Nichols J, Chambers I, Smith A (2003) BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell 115:281–292

    Article  CAS  PubMed  Google Scholar 

  • Yu P, Pan G, Yu J, Thomson JA (2011) FGF2 sustains NANOG and switches the outcome of BMP4-induced human embryonic stem cell differentiation. Cell Stem Cell 8:326–334

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Akiko Hamada, Ayaka Fujiki, Mari Wakabayashi, Naoko Ueda, Kaori Okada, and Minako Okamura for an excellent technical support and Takayuki Fukuda for the technical support and discussion. This study was supported by grants-in-aid from the Ministry of Health, Labor and Welfare of Japan to M.K.F.; the Ministry of Education, Culture, Sports, Science, and Technology of Japan to M.K.F., M.S., and M.K.; and the New Energy and Industrial Technology Development Organization (NEDO) of Japan to M.K.F.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miho K. Furue.

Additional information

Editor: T. Okamoto

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 17 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mimura, S., Suga, M., Liu, Y. et al. Synergistic effects of FGF-2 and Activin A on early neural differentiation of human pluripotent stem cells. In Vitro Cell.Dev.Biol.-Animal 51, 769–775 (2015). https://doi.org/10.1007/s11626-015-9909-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-015-9909-8

Keywords

Navigation