Skip to main content
Log in

Chemopreventive effects of curcumin on chemically induced mouse skin carcinogenesis in BK5.insulin-like growth factor-1 transgenic mice

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The insulin-like growth factor-1 (IGF-1) signaling pathway is strongly associated with the risk of various cancers, and its inhibition has emerged as a potent anticancer strategy. Accumulating evidence from in vitro studies has shown that curcumin is a potent inhibitor of the IGF-1 signaling pathway. However, direct evidence that curcumin modulates IGF-1-induced tumorigenesis in a physiological system has not been reported. Therefore, in this study, we assessed the anticarcinogenic activity of curcumin on skin cancer by using BK5.IGF-1 transgenic (Tg) mice that overexpress IGF-1 in the skin epidermis. In 7,12-dimethylbenz(a)anthracene (DMBA)-tetradecanoyl phorbol-13-acetate (TPA) two-stage skin carcinogenesis, a curcumin diet (0.02% wt/wt) fed for 14 wk remarkably reduced mouse skin tumor multiplicity by 53%, epidermal hyperplasia and proliferation compared to the control diet group. TPA-induced phosphorylation of Akt, S6 kinase (S6K), and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) in mouse skin was lower in the curcumin group than in the control group. Curcumin treatment inhibited IGF-1-induced phosphorylation of the IGF-1 receptor, insulin receptor substrate-1, Akt, S6K, and 4EBP1 in the mouse keratinocyte cell line, C50 in a dose-dependent manner. Taken together, these data suggest that curcumin exerts significant anticarcinogenic activity in skin cancer through the inhibition of IGF-1 signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.

Similar content being viewed by others

References

  • Abusnina A, Keravis T, Yougbare I, Bronner C, Lugnier C (2011) Anti-proliferative effect of curcumin on melanoma cells is mediated by PDE1A inhibition that regulates the epigenetic integrator UHRF1. Mol Nutr Food Res 55:1677–1689

    Article  PubMed  CAS  Google Scholar 

  • Beevers CS, Li F, Liu L, Huang S (2006) Curcumin inhibits the mammalian target of rapamycin-mediated signaling pathways in cancer cells. Int J Cancer 119:757–764

    Article  PubMed  CAS  Google Scholar 

  • Beevers CS, Chen L, Liu L, Luo Y, Webster NJ, Huang S (2009) Curcumin disrupts the Mammalian target of rapamycin-raptor complex. Cancer Res 69:1000–1008

    Article  PubMed  CAS  Google Scholar 

  • Calvo E, Bolos V, Grande E (2009) Multiple roles and therapeutic implications of Akt signaling in cancer. Oncol Targets Ther 2:135–150

    CAS  Google Scholar 

  • Chen J, Zeng J, Xin M, Huang W, Chen X (2011) Formononetin induces cell cycle arrest of human breast cancer cells via IGF1/PI3K/Akt pathways in vitro and in vivo. Horm Metab Res 43:681–686

    Article  PubMed  CAS  Google Scholar 

  • Choudhuri T, Pal S, Agwarwal ML, Das T, Sa G (2002) Curcumin induces apoptosis in human breast cancer cells through p53-dependent Bax induction. FEBS Lett 512:334–340

    Article  PubMed  CAS  Google Scholar 

  • Conti CJ, Fries JW, Viaje A, Miller DR, Morris R, Slaga TJ (1988) In vivo behavior of murine epidermal cell lines derived from initiated and noninitiated skin. Cancer Res 48:435–439

    PubMed  CAS  Google Scholar 

  • Dann SG, Selvaraj A, Thomas G (2007) mTOR complex1-S6K1 signaling: at the crossroads of obesity, diabetes and cancer. Trends Mol Med 13:252–259

    Article  PubMed  CAS  Google Scholar 

  • DiGiovanni J, Bol DK, Wilker E, Beltran L, Carbajal S, Moats S, Ramirez A, Jorcano J, Kiguchi K (2000) Constitutive expression of insulin-like growth factor-1 in epidermal basal cells of transgenic mice leads to spontaneous tumor promotion. Cancer Res 60:1561–1570

    PubMed  CAS  Google Scholar 

  • Dorai T, Gehani N, Katz A (2000) Therapeutic potential of curcumin in human prostate cancer. II. Curcumin inhibits tyrosine kinase activity of epidermal growth factor receptor and depletes the protein. Mol Urol 4:1–6

    PubMed  CAS  Google Scholar 

  • Ibrahim A, El-Meligy A, Lungu G, Fetaih H, Dessouki A, Stoica G, Barhoumi R (2011) Curcumin induces apoptosis in a murine mammary gland adenocarcinoma cell line through the mitochondrial pathway. Eur J Pharmacol 668:127–132

    Article  PubMed  CAS  Google Scholar 

  • Kanwar SS, Yu Y, Nautiyal J, Patel BB, Padhye S (2011) Difluorinated-curcumin (CDF): a novel curcumin analog is a potent inhibitor of colon cancer stem-like cells. Pharm Res 28:827–838

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kapakos G, Youreva V, Srivastava AK (2012) Attenuation of endothelin-1-induced PKB and ERK1/2 signaling, as well as Egr-1 expression, by curcumin in A-10 vascular smooth muscle cells. Can J Physiol Pharmacol 90:1277–1285

    Article  PubMed  CAS  Google Scholar 

  • Kawamori T, Lubet R, Steele VE, Kelloff GJ, Kaskey RB, Rao CV, Reddy BS (1999) Chemopreventive effect of curcumin, a naturally occurring anti-inflammatory agent, during the promotion/progression stages of colon cancer. Cancer Res 59:597–601

    PubMed  CAS  Google Scholar 

  • Lashinger LM, Malone LM, McArthur MJ, Goldberg JA, Daniels EA, Pavone A, Colby JK, Smith NC, Perkins SN, Fischer SM, Hursting SD (2011) Genetic reduction of insulin-like growth factor-1 mimics the anticancer effects of calorie restriction on cyclooxygenase-2-driven pancreatic neoplasia. Cancer Prev Res 4:1030–1040

    Article  CAS  Google Scholar 

  • Lee HP, Li TM, Tsao JY, Fong YC, Tang CH (2012) Curcumin induces cell apoptosis in human chondrosarcoma through extrinsic death receptor pathway. Int Immunopharmacol 13:163–169

    Article  PubMed  Google Scholar 

  • Lin HP, Kuo LK, Chuu CP (2012) Combined treatment of curcumin and small molecule inhibitors suppresses proliferation of A549 and H1299 human non-small-cell lung cancer cells. Phytother Res 26:122–126

    Article  PubMed  CAS  Google Scholar 

  • Mitsiades CS, Mitsiades NS, McMullan CJ, Poulaki V, Shringarpure R, Akiyama M, Hideshima T, Chauhan D, Joseph M, Libermann TA, García-Echeverría C, Pearson MA, Hofmann F, Anderson KC, Kung AL (2004) Inhibition of the insulin-like growth factor receptor-1 tyrosine kinase activity as a therapeutic strategy for multiple myeloma, other hematologic malignancies, and solid tumors. Cancer Cell 5:221–230

    Article  PubMed  CAS  Google Scholar 

  • Nakae J, Kido Y, Accili D (2001) Distinct and overlapping functions of insulin and IGF-I receptors. Endocr Rev 22:818–835

    Article  PubMed  CAS  Google Scholar 

  • Patel BB, Sengupta R, Qazi S, Vachhani H, Yu Y, Rishi AK, Majumdar AP (2008) Curcumin enhances the effects of 5-fluorouracil and oxaliplatin in mediating growth inhibition of colon cancer cells by modulating EGFR and IGF-1R. Int J Cancer 122:267–273

    Article  PubMed  CAS  Google Scholar 

  • Pollak M (2012) The insulin and insulin-like growth factor receptor family in neoplasia: an update. Nat Rev Cancer 12:159–169

    PubMed  CAS  Google Scholar 

  • Renehan AG, Zwahlen M, Minder C, O'Dwyer ST, Shalet SM, Egger M (2004) Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: systematic review and meta-regression analysis. Lancet 363:1346–1353

    Article  PubMed  CAS  Google Scholar 

  • Rho O, Bol DK, You J, Beltran L, Rupp T, DiGiovanni J (1996) Altered expression of insulin-like growth factor I and its receptor during multistage carcinogenesis in mouse skin. Mol Carcinog 17:62–69

    Article  PubMed  CAS  Google Scholar 

  • Schaffer M, Schaffer PM, Zidan J, Bar Sela G (2011) Curcuma as a functional food in the control of cancer and inflammation. Curr Opin Clin Nutr Metab Care 14:588–597

    Article  PubMed  CAS  Google Scholar 

  • Sen GS, Mohanty S, Hossain DM, Bhattacharyya S, Banerjee S, Chakraborty J, Saha S, Ray P, Bhattacharjee P, Mandal D, Bhattacharya A, Chattopadhyay S, Das T, Sa G (2011) Curcumin enhances the efficacy of chemotherapy by tailoring p65NFkappaB-p300 cross-talk in favor of p53-p300 in breast cancer. J Biol Chem 286:42232–42247

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Sharma RA, Gescher AJ, Steward WP (2005) Curcumin: the story so far. Eur J Cancer 41:1955–1968

    Article  PubMed  CAS  Google Scholar 

  • Shishodia S, Singh T, Chaturvedi MM (2007) Modulation of transcription factors by curcumin. Adv Exp Med Biol 595:127–148

    Article  PubMed  Google Scholar 

  • Sun SH, Huang HC, Huang C, Lin JK (2012) Cycle arrest and apoptosis in MDA-MB-231/Her2 cells induced by Curcumin. Eur J Pharmacol 690:22–30

    Article  PubMed  CAS  Google Scholar 

  • Taromaru GC, DE Oliveira VM, Silva MA, Montor WR, Bagnoli F, Rinaldi JF, Aoki T (2012) Interaction between cyclooxygenase-2 and insulin-like growth factor in breast cancer: a new field for prevention and treatment. Oncol Lett 3:682–688

    PubMed  CAS  PubMed Central  Google Scholar 

  • Wilker E, Bol D, Kiguchi K, Rupp T, Beltran L, Beltrán L, DiGiovanni J (1999) Enhancement of susceptibility to diverse skin tumor promoters by activation of the insulin-like growth factor-1 receptor in the epidermis of transgenic mice. Mol Carcinog 25:122–131

    Article  PubMed  CAS  Google Scholar 

  • Wong TF, Takeda T, Li B, Tsuiji K, Kitamura M, Kondo A, Yaegashi N (2011) Curcumin disrupts uterine leiomyosarcoma cells through AKT-mTOR pathway inhibition. Gynecol Oncol 122:141–148

    Article  PubMed  CAS  Google Scholar 

  • Xia Y, Jin L, Zhang B, Xue H, Li Q, Xu Y (2007) The potentiation of curcumin on insulin-like growth factor-1 action in MCF-7 human breast carcinoma cells. Life Sci 80:2161–2169

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Thomas DP, Zhang X, Culver BW, Alexander BM, Murdoch WJ, Rao MN, Tulis DA, Ren J, Sreejayan N (2006) Curcumin inhibits platelet-derived growth factor-stimulated vascular smooth muscle cell function and injury-induced neointima formation. Arterioscler Thromb Vasc Biol 26:85–90

    Article  PubMed  Google Scholar 

  • Ye MX, Zhao YL, Li Y, Miao Q, Li ZK, Ren XL, Song LQ, Yin H, Zhang J (2012) Curcumin reverses cis-platin resistance and promotes human lung adenocarcinoma A549/DDP cell apoptosis through HIF-1alpha and caspase-3 mechanisms. Phytomedicine 19:779–787

    Article  PubMed  CAS  Google Scholar 

  • Yu S, Shen G, Khor TO, Kim JH, Kong AN (2008) Curcumin inhibits Akt/mammalian target of rapamycin signaling through protein phosphatase-dependent mechanism. Mol Cancer Ther 7:2609–2620

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zhou H, Beevers CS, Huang S (2011) The targets of curcumin. Curr Drug Targets 12:332–347

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science, and Technology (MEST) (331-2008-1-C00308).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eunjung Kim.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, H., Park, J., Tak, KH. et al. Chemopreventive effects of curcumin on chemically induced mouse skin carcinogenesis in BK5.insulin-like growth factor-1 transgenic mice. In Vitro Cell.Dev.Biol.-Animal 50, 883–892 (2014). https://doi.org/10.1007/s11626-014-9791-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9791-9

Keywords

Navigation