Skip to main content
Log in

Impact of Perioperative Phosphorus and Glucose Levels on Liver Regeneration and Long-term Outcomes after Major Liver Resection

  • Original Article
  • Published:
Journal of Gastrointestinal Surgery

Abstract

Introduction

The impact of phosphorus as well as glycemic alterations on liver regeneration has not been directly examined. We sought to determine the impact of phosphorus and glucose on liver regeneration after major hepatectomy.

Methods

Early and late liver regeneration index was defined as the relative increase of liver volume (RLV) within 2[(RLV2m-RLVp)/RLVp] and 7 months[(RLV7m-RLVp)/RLVp] following surgery. The association of perioperative metabolic factors, liver regeneration, and outcomes was assessed.

Results

On postoperative day 2, 50 (52.6 %) patients had a low phosphorus level (≤2.4 mg/dl), while 45 (47.4 %) had a normal/high phosphorus level (>2.4 mg/dl). Despite comparable clinicopathologic characteristics (all P > 0.05) and RLV/TLV at surgery (P = 0.84), regeneration index within 2 months was lower in the normal/high phosphorus group (P = 0.01) with these patients having increased risk for postoperative liver failure (P = 0.01). The inhibition of liver regeneration persisted at 7 months (P = 0.007) and was associated with a worse survival (P = 0.02). Preoperative hypoglycemia was associated only with a lower early regeneration index (P = 0.02).

Conclusions

Normal/high phosphorus was associated with inhibition of early and late liver regeneration, as well as with an increased risk of liver failure and worse long-term outcomes. Immediate preoperative hypoglycemia was associated with a lower early volumetric gain. Metabolic factors may represent early indicators of liver failure that could identify patients at increased risk for worse outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Clavien PA, Petrowsky H, DeOliveira ML, Graf R. Strategies for safer liver surgery and partial liver transplantation. The New England journal of medicine. 2007;356:1545–1559.

    Article  PubMed  Google Scholar 

  2. Mazzaferro V, Llovet JM, Miceli R, Bhoori S, Schiavo M, Mariani L, Camerini T, Roayaie S, Schwartz ME, Grazi GL, Adam R, Neuhaus P, Salizzoni M, Bruix J, Forner A, De Carlis L, Cillo U, Burroughs AK, Troisi R, Rossi M, Gerunda GE, Lerut J, Belghiti J, Boin I, Gugenheim J, Rochling F, Van Hoek B, Majno P, Metroticket Investigator Study G. Predicting survival after liver transplantation in patients with hepatocellular carcinoma beyond the Milan criteria: a retrospective, exploratory analysis. The Lancet Oncology. 2009;10:35–43.

    Article  PubMed  Google Scholar 

  3. Schnitzbauer AA, Lang SA, Goessmann H, Nadalin S, Baumgart J, Farkas SA, Fichtner-Feigl S, Lorf T, Goralcyk A, Horbelt R, Kroemer A, Loss M, Rummele P, Scherer MN, Padberg W, Konigsrainer A, Lang H, Obed A, Schlitt HJ. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Annals of surgery. 2012;255:405–414.

    Article  PubMed  Google Scholar 

  4. Kele PG, de Boer M, van der Jagt EJ, Lisman T, Porte RJ. Early hepatic regeneration index and completeness of regeneration at 6 months after partial hepatectomy. The British journal of surgery. 2012;99:1113–1119.

    Article  CAS  PubMed  Google Scholar 

  5. Truant S, Bouras AF, Petrovai G, Buob D, Ernst O, Boleslawski E, Hebbar M, Pruvot FR. Volumetric gain of the liver after major hepatectomy in obese patients: a case-matched study in 84 patients. Annals of surgery. 2013;258:696–702; discussion 702–694.

    Article  PubMed  Google Scholar 

  6. Krupczak-Hollis K, Wang X, Dennewitz MB, Costa RH. Growth hormone stimulates proliferation of old-aged regenerating liver through forkhead box m1b. Hepatology. 2003;38:1552–1562.

    Article  CAS  PubMed  Google Scholar 

  7. Mann DV, Lam WW, Hjelm NM, So NM, Yeung DK, Metreweli C, Lau WY. Metabolic control patterns in acute phase and regenerating human liver determined in vivo by 31-phosphorus magnetic resonance spectroscopy. Annals of surgery. 2002;235:408–416.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Baquerizo A, Anselmo D, Shackleton C, Chen TW, Cao C, Weaver M, Gornbein J, Geevarghese S, Nissen N, Farmer D, Demetriou A, Busuttil RW. Phosphorus as an early predictive factor in patients with acute liver failure. Transplantation. 2003;75:2007–2014.

    Article  CAS  PubMed  Google Scholar 

  9. George R, Shiu MH. Hypophosphatemia after major hepatic resection. Surgery. 1992;111:281–286.

    CAS  PubMed  Google Scholar 

  10. Squires MH, 3rd, Dann GC, Lad NL, Fisher SB, Martin BM, Kooby DA, Sarmiento JM, Russell MC, Cardona K, Staley CA, 3rd, Maithel SK. Hypophosphataemia after major hepatectomy and the risk of post-operative hepatic insufficiency and mortality: an analysis of 719 patients. HPB : the official journal of the International Hepato Pancreato Biliary Association. 2014;16:884–891.

    Article  Google Scholar 

  11. Salem RR, Tray K. Hepatic resection-related hypophosphatemia is of renal origin as manifested by isolated hyperphosphaturia. Annals of surgery. 2005;241:343–348.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Nafidi O, Lapointe RW, Lepage R, Kumar R, D'Amour P. Mechanisms of renal phosphate loss in liver resection-associated hypophosphatemia. Annals of surgery. 2009;249:824–827.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Giovannini I, Chiarla C, Giuliante F, Ardito F, Vellone M, Nuzzo G. Hepatic resection-related hypophosphatemia is of renal origin as manifested by isolated hyperphosphaturia. Annals of surgery. 2006;243:429; author reply 429.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Weymann A, Hartman E, Gazit V, Wang C, Glauber M, Turmelle Y, Rudnick DA. p21 is required for dextrose-mediated inhibition of mouse liver regeneration. Hepatology. 2009;50:207–215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Strasberg SM. Nomenclature of hepatic anatomy and resections: a review of the Brisbane 2000 system. Journal of hepato-biliary-pancreatic surgery. 2005;12:351–355.

    Article  PubMed  Google Scholar 

  16. Kamel IR, Erbay N, Warmbrand G, Kruskal JB, Pomfret EA, Raptopoulos V. Liver regeneration after living adult right lobe transplantation. Abdominal imaging. 2003;28:53–57.

    Article  CAS  PubMed  Google Scholar 

  17. Marcos A, Fisher RA, Ham JM, Shiffman ML, Sanyal AJ, Luketic VA, Sterling RK, Fulcher AS, Posner MP. Liver regeneration and function in donor and recipient after right lobe adult to adult living donor liver transplantation. Transplantation. 2000;69:1375–1379.

    Article  CAS  PubMed  Google Scholar 

  18. Zappa M, Dondero F, Sibert A, Vullierme MP, Belghiti J, Vilgrain V. Liver regeneration at day 7 after right hepatectomy: global and segmental volumetric analysis by using CT. Radiology. 2009;252:426–432.

    Article  PubMed  Google Scholar 

  19. Mullen JT, Ribero D, Reddy SK, Donadon M, Zorzi D, Gautam S, Abdalla EK, Curley SA, Capussotti L, Clary BM, Vauthey JN. Hepatic insufficiency and mortality in 1,059 noncirrhotic patients undergoing major hepatectomy. Journal of the American College of Surgeons. 2007;204:854–862; discussion 862–854.

    Article  PubMed  Google Scholar 

  20. Balzan S, Belghiti J, Farges O, Ogata S, Sauvanet A, Delefosse D, Durand F. The "50-50 criteria" on postoperative day 5: an accurate predictor of liver failure and death after hepatectomy. Annals of surgery. 2005;242:824–828, discussion 828–829.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Paugam-Burtz C, Janny S, Delefosse D, Dahmani S, Dondero F, Mantz J, Belghiti J. Prospective validation of the "fifty-fifty" criteria as an early and accurate predictor of death after liver resection in intensive care unit patients. Annals of surgery. 2009;249:124–128.

    Article  PubMed  Google Scholar 

  22. Starlinger P, Assinger A, Haegele S, Wanek D, Zikeli S, Schauer D, Birner P, Fleischmann E, Gruenberger B, Brostjan C, Gruenberger T. Evidence for serotonin as a relevant inducer of liver regeneration after liver resection in humans. Hepatology. 2014;60:257–266.

    Article  CAS  PubMed  Google Scholar 

  23. Dindo D, Demartines N, Clavien PA. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Annals of surgery. 2004;240:205–213.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Siu J, McCall J, Connor S. Systematic review of pathophysiological changes following hepatic resection. HPB : the official journal of the International Hepato Pancreato Biliary Association. 2014;16:407–421.

    Article  Google Scholar 

  25. Garcea G, Maddern GJ. Liver failure after major hepatic resection. Journal of hepato-biliary-pancreatic surgery. 2009;16:145–155.

    Article  PubMed  Google Scholar 

  26. Nagino M, Ando M, Kamiya J, Uesaka K, Sano T, Nimura Y. Liver regeneration after major hepatectomy for biliary cancer. The British journal of surgery. 2001;88:1084–1091.

    Article  CAS  PubMed  Google Scholar 

  27. de Graaf W, Bennink RJ, Heger M, Maas A, de Bruin K, van Gulik TM. Quantitative assessment of hepatic function during liver regeneration in a standardized rat model. Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2011;52:294–302.

    Article  Google Scholar 

  28. Kwon AH, Matsui Y, Kaibori M, Kamiyama Y. Functional hepatic regeneration following hepatectomy using galactosyl-human serum albumin liver scintigraphy. Transplantation proceedings. 2004;36:2257–2260.

    Article  PubMed  Google Scholar 

  29. Nomura K, Tatsumi S, Miyagawa A, Shiozaki Y, Sasaki S, Kaneko I, Ito M, Kido S, Segawa H, Sano M, Fukuwatari T, Shibata K, Miyamoto K. Hepatectomy-related hypophosphatemia: a novel phosphaturic factor in the liver-kidney axis. Journal of the American Society of Nephrology : JASN. 2014;25:761–772.

    Article  CAS  PubMed  Google Scholar 

  30. Taub R. Liver regeneration: from myth to mechanism. Nature reviews Molecular cell biology. 2004;5:836–847.

    Article  CAS  PubMed  Google Scholar 

  31. Michalopoulos GK. Liver regeneration after partial hepatectomy: critical analysis of mechanistic dilemmas. The American journal of pathology. 2010;176:2–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Smyrniotis V, Kostopanagiotou G, Katsarelias D, Theodoraki K, Hondros K, Kouskouni E. Changes of serum phosphorus levels in hepatic resections and implications on patients' outcomes. International surgery. 2003;88:100–104.

    PubMed  Google Scholar 

  33. Ye Z, Palazzo JP, Lin L, Lai Y, Guiles F, Myers RE, Han J, Xing J, Yang H. Postoperative hyperphosphatemia significantly associates with adverse survival in colorectal cancer patients. Journal of gastroenterology and hepatology. 2013;28:1469–1475.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Webber EM, FitzGerald MJ, Brown PI, Bartlett MH, Fausto N. Transforming growth factor-alpha expression during liver regeneration after partial hepatectomy and toxic injury, and potential interactions between transforming growth factor-alpha and hepatocyte growth factor. Hepatology. 1993;18:1422–1431.

    Article  CAS  PubMed  Google Scholar 

  35. Michalopoulos GK. Liver regeneration: molecular mechanisms of growth control. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 1990;4:176–187.

    CAS  Google Scholar 

  36. Picardo A, Karpoff HM, Ng B, Lee J, Brennan MF, Fong Y. Partial hepatectomy accelerates local tumor growth: potential roles of local cytokine activation. Surgery. 1998;124:57–64.

    Article  CAS  PubMed  Google Scholar 

  37. Slooter GD, Marquet RL, Jeekel J, Ijzermans JN. Tumour growth stimulation after partial hepatectomy can be reduced by treatment with tumour necrosis factor alpha. The British journal of surgery. 1995;82:129–132.

    Article  CAS  PubMed  Google Scholar 

  38. Bechmann LP, Hannivoort RA, Gerken G, Hotamisligil GS, Trauner M, Canbay A. The interaction of hepatic lipid and glucose metabolism in liver diseases. Journal of hepatology. 2012;56:952–964.

    Article  CAS  PubMed  Google Scholar 

  39. Caruana JA, Whalen DA, Jr., Anthony WP, Sunby CR, Ciechoski MP. Paradoxical effects of glucose feeding on liver regeneration and survival after partial hepatectomy. Endocrine research. 1986;12:147–156.

    Article  CAS  PubMed  Google Scholar 

  40. Holecek M. Nutritional modulation of liver regeneration by carbohydrates, lipids, and amino acids: a review. Nutrition. 1999;15:784–788.

    Article  CAS  PubMed  Google Scholar 

  41. Simek J, Chmelar V, Melka J, Pazderka, Charvat Z. Influence of protracted infusion of glucose and insulin on the composition and regeneration activity of liver after partial hepatectomy in rats. Nature. 1967;213:910–911.

    CAS  PubMed  Google Scholar 

  42. Kang LI, Mars WM, Michalopoulos GK. Signals and cells involved in regulating liver regeneration. Cells. 2012;1:1261–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy M. Pawlik.

Ethics declarations

Funding/Support

None.

Conflict of interest

None.

Additional information

Georgios Antonios Margonis and Neda Amini contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Margonis, G.A., Amini, N., Buettner, S. et al. Impact of Perioperative Phosphorus and Glucose Levels on Liver Regeneration and Long-term Outcomes after Major Liver Resection. J Gastrointest Surg 20, 1305–1316 (2016). https://doi.org/10.1007/s11605-016-3147-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11605-016-3147-6

Keywords

Navigation