Skip to main content

Advertisement

Log in

Differential diagnosis of MCI with Lewy bodies and MCI due to Alzheimer’s disease by visual assessment of occipital hypoperfusion on SPECT images

  • Original Article
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

Purpose

Predicting progression of mild cognitive impairment (MCI) to Alzheimer’s disease (AD) or dementia with Lewy bodies (DLB) is important. We evaluated morphological and functional differences between MCI with Lewy bodies (MCI-LB) and MCI due to AD (MCI-AD), and a method for differentiating between these conditions using brain MRI and brain perfusion SPECT.

Methods

A continuous series of 101 subjects, who had visited our memory clinic and met the definition of MCI, were enrolled retrospectively. They were consisted of 60 MCI-LB and 41 MCI-AD subjects. Relative cerebral blood flow (rCBF) on SPECT images and relative brain atrophy on MRI images were evaluated. We performed voxel-based analysis and visually inspected brain perfusion SPECT images for regional brain atrophy, occipital hypoperfusion and the cingulate island sign (CIS), for differential diagnosis of MCI-LB and MCI-AD.

Results

MRI showed no significant differences in regional atrophy between the MCI-LB and MCI-AD groups. In MCI-LB subjects, occipital rCBF was significantly decreased compared with MCI-AD subjects (p < 0.01, family wise error [FWE]-corrected). Visual inspection of occipital hypoperfusion had sensitivity, specificity, and accuracy values of 100%, 73.2% and 89.1%, respectively, for differentiating MCI-LB and MCI-AD. Occipital hypoperfusion was offered higher diagnostic utility than the CIS.

Conclusions

The occipital lobe was the region with significantly decreased rCBF in MCI-LB compared with MCI-AD subjects. Occipital hypoperfusion on brain perfusion SPECT may be a more useful imaging biomarker than the CIS for visually differentiating MCI-LB and MCI-AD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E. Mild cognitive impairment: clinical characterization and outcome. Arch Neurol. 1999;56:303–8.

    Article  CAS  PubMed  Google Scholar 

  2. Ikejima C, Hisanaga A, Meguro K, Yamada T, Ouma S, Kawamuro Y, et al. Multicentre population-based dementia prevalence survey in Japan: a preliminary report. Psychogeriatrics. 2012;12:120–3.

    Article  PubMed  Google Scholar 

  3. Frisoni GB, Fratiglioni L, Fastbom J, Guo Z, Viitanen M, Winblad B. Mild cognitive impairment in the population and physical health: data on 1,435 individuals aged 75 to 95. J Gerontol A Biol Sci Med Sci. 2000;55:M322–8.

    Article  CAS  PubMed  Google Scholar 

  4. Mitchell AJ, Shiri-Feshki M. Rate of progression of mild cognitive impairment to dementia–meta-analysis of 41 robust inception cohort studies. Acta Psychiatr Scand. 2009;119:252–65.

    Article  CAS  PubMed  Google Scholar 

  5. Roberts R, Knopman DS. Classification and epidemiology of MCI. Clin Geriatr Med. 2013;29:753–72.

    Article  PubMed  Google Scholar 

  6. Kishi T, Matsunaga S, Oya K, Ikuta T, Iwata N. Protection against brain atrophy by anti-dementia medication in mild cognitive impairment and Alzheimer’s disease: meta-analysis of longitudinal randomized placebo-controlled trials. Int J Neuropsychopharmacol. 2015. https://doi.org/10.1093/ijnp/pyv070.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tricco AC, Soobiah C, Berliner S, Ho JM, Ng CH, Ashoor HM, et al. Efficacy and safety of cognitive enhancers for patients with mild cognitive impairment: a systematic review and meta-analysis. CMAJ. 2013;185:1393–401.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sugimoto T, Sakurai T, Akatsu H, Doi T, Fujiwara Y, Hirakawa A, et al. The Japan-Multimodal Intervention Trial for Prevention of Dementia (J-MINT): the study protocol for an 18-month, multicenter, randomized, controlled trial. J Prev Alzheimers Dis. 2021. https://doi.org/10.14283/jpad.2021.29.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Shimada H, Makizako H, Doi T, Park H, Tsutsumimoto K, Verghese J, et al. Effects of combined physical and cognitive exercises on cognition and mobility in patients with mild cognitive impairment: a randomized clinical trial. J Am Med Dir Assoc. 2018;19:584–91.

    Article  PubMed  Google Scholar 

  10. Petersen RC, Lopez O, Armstrong MJ, Getchius TSD, Ganguli M, Gloss D, et al. Practice guideline update summary: mild cognitive impairment: report of the guideline development, dissemination, and implementation subcommittee of the american academy of neurology. Neurology. 2018;90:126–35.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al. Dementia prevention, intervention, and care. Lancet. 2017;390:2673–734.

    Article  PubMed  Google Scholar 

  12. Suzuki T, Shimada H, Makizako H, Doi T, Yoshida D, Ito K, et al. A randomized controlled trial of multicomponent exercise in older adults with mild cognitive impairment. PLoS ONE. 2013;8: e61483.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  13. Brodaty H, Heffernan M, Kochan NA, Draper B, Trollor JN, Reppermund S, et al. Mild cognitive impairment in a community sample: the Sydney Memory and Ageing Study. Alzheimers Dement. 2013;9:310-7.e1.

    Article  PubMed  Google Scholar 

  14. Suzuki T, Shimada H, Makizako H, Doi T, Yoshida D, Tsutsumimoto K, et al. Effects of multicomponent exercise on cognitive function in older adults with amnestic mild cognitive impairment: a randomized controlled trial. BMC Neurol. 2012;12:128.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lautenschlager NT, Cox K, Kurz AF. Physical activity and mild cognitive impairment and Alzheimer’s disease. Curr Neurol Neurosci Rep. 2010;10:352–8.

    Article  PubMed  Google Scholar 

  16. Yokoi K, Nishio Y, Uchiyama M, Shimomura T, Iizuka O, Mori E. Hallucinators find meaning in noises: pareidolic illusions in dementia with Lewy bodies. Neuropsychologia. 2014;56:245–54.

    Article  PubMed  Google Scholar 

  17. Swanson CJ, Zhang Y, Dhadda S, Wang J, Kaplow J, Lai RYK, et al. A randomized, double-blind, phase 2b proof-of-concept clinical trial in early Alzheimer’s disease with lecanemab, an anti-Aβ protofibril antibody. Alzheimers Res Ther. 2021;13:80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Salloway S, Chalkias S, Barkhof F, Burkett P, Barakos J, Purcell D, et al. Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early Alzheimer disease. JAMA Neurol. 2022;79:13–21.

    Article  PubMed  Google Scholar 

  19. Matsuda H, Yokoyama K, Sato N, Ito K, Nemoto K, Oba H, et al. Differentiation between dementia with Lewy bodies And Alzheimer’s disease using voxel-based morphometry of structural MRI: a multicenter study. Neuropsychiatr Dis Treat. 2019;15:2715–22.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Goto H, Ishii K, Uemura T, Miyamoto N, Yoshikawa T, Shimada K, et al. Differential diagnosis of dementia with Lewy Bodies and Alzheimer Disease using combined MR imaging and brain perfusion single-photon emission tomography. AJNR Am J Neuroradiol. 2010;31:720–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Whitwell JL, Weigand SD, Shiung MM, Boeve BF, Ferman TJ, Smith GE, et al. Focal atrophy in dementia with Lewy bodies on MRI: a distinct pattern from Alzheimer’s disease. Brain. 2007;130:708–19.

    Article  PubMed  Google Scholar 

  22. Middelkoop HA, van der Flier WM, Burton EJ, Lloyd AJ, Paling S, Barber R, et al. Dementia with Lewy bodies and AD are not associated with occipital lobe atrophy on MRI. Neurology. 2001;57:2117–20.

    Article  CAS  PubMed  Google Scholar 

  23. Barber R, Gholkar A, Scheltens P, Ballard C, McKeith IG, O’Brien JT. Medial temporal lobe atrophy on MRI in dementia with Lewy bodies. Neurology. 1999;52:1153–8.

    Article  CAS  PubMed  Google Scholar 

  24. O’Brien JT, Firbank MJ, Davison C, Barnett N, Bamford C, Donaldson C, et al. 18F-FDG PET and perfusion SPECT in the diagnosis of Alzheimer and Lewy body dementias. J Nucl Med. 2014;55:1959–65.

    Article  CAS  PubMed  Google Scholar 

  25. Chiba Y, Iseki E, Fujishiro H, Ota K, Kasanuki K, Suzuki M, et al. Early differential diagnosis between Alzheimer’s disease and dementia with Lewy bodies: comparison between (18)F-FDG PET and (123)I-IMP SPECT. Psychiatry Res Neuroimaging. 2016;249:105–12.

    Article  PubMed  Google Scholar 

  26. Massa F, Chincarini A, Bauckneht M, Raffa S, Peira E, Arnaldi D, et al. Added value of semiquantitative analysis of brain FDG-PET for the differentiation between MCI-Lewy bodies and MCI due to Alzheimer’s disease. Eur J Nucl Med Mol Imaging. 2022;49:1263–74.

    Article  CAS  PubMed  Google Scholar 

  27. Arbizu J, Festari C, Altomare D, Walker Z, Bouwman F, Rivolta J, et al. Clinical utility of FDG-PET for the clinical diagnosis in MCI. Eur J Nucl Med Mol Imaging. 2018;45:1497–508.

    Article  CAS  PubMed  Google Scholar 

  28. Chiba Y, Fujishiro H, Iseki E, Kasanuki K, Sato K. The Cingulate Island Sign on FDG-PET vs. IMP-SPECT to assess mild cognitive impairment in Alzheimer’s disease vs. Dementia with Lewy Bodies. J Neuroimaging. 2019;29:712–20.

    Article  PubMed  Google Scholar 

  29. Roberts G, Durcan R, Donaghy PC, Lawley S, Ciafone J, Hamilton CA, et al. Accuracy of cardiac innervation scintigraphy for mild cognitive impairment with Lewy bodies. Neurology. 2021;96:e2801–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Thomas AJ, Donaghy P, Roberts G, Colloby SJ, Barnett NA, Petrides G, et al. Diagnostic accuracy of dopaminergic imaging in prodromal dementia with Lewy bodies. Psychol Med. 2019;49:396–402.

    Article  PubMed  Google Scholar 

  31. McKeith IG, Ferman TJ, Thomas AJ, Blanc F, Boeve BF, Fujishiro H, et al. Research criteria for the diagnosis of prodromal dementia with Lewy bodies. Neurology. 2020;94:743–55.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–9.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Nakata T, Shimada K, Iba A, Oda H, Terashima A, Koide Y, et al. Correlation between noise pareidolia test scores for visual hallucinations and regional cerebral blood flow in dementia with Lewy bodies. Ann Nucl Med. 2022;36:384–92.

    Article  PubMed  Google Scholar 

  34. Ishii K. Diagnostic imaging of dementia with Lewy bodies, frontotemporal lobar degeneration, and normal pressure hydrocephalus. Jpn J Radiol. 2020;38:64–76.

    Article  PubMed  Google Scholar 

  35. Walker Z, Jaros E, Walker RW, Lee L, Costa DC, Livingston G, et al. Dementia with Lewy bodies: a comparison of clinical diagnosis, FP-CIT single photon emission computed tomography imaging and autopsy. J Neurol Neurosurg Psychiatry. 2007;78:1176–81.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Tatsch K, Poepperl G. Nigrostriatal dopamine terminal imaging with dopamine transporter SPECT: an update. J Nucl Med. 2013;54:1331–8.

    Article  CAS  PubMed  Google Scholar 

  37. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113.

    Article  PubMed  Google Scholar 

  38. Ishii K, Soma T, Shimada K, Oda H, Terashima A, Kawasaki R. Automatic volumetry of the cerebrospinal fluid space in idiopathic normal pressure hydrocephalus. Dement Geriatr Cogn Dis Extra. 2013;3:489–96.

    Article  PubMed  PubMed Central  Google Scholar 

  39. McKeith IG, Boeve BF, Dickson DW, Halliday G, Taylor JP, Weintraub D, et al. Diagnosis and management of dementia with Lewy bodies: fourth consensus report of the DLB Consortium. Neurology. 2017;89:88–100.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Imabayashi E, Yokoyama K, Tsukamoto T, Sone D, Sumida K, Kimura Y, et al. The cingulate island sign within early Alzheimer’s disease-specific hypoperfusion volumes of interest is useful for differentiating Alzheimer’s disease from dementia with Lewy bodies. EJNMMI Res. 2016;6:67.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Graff-Radford J, Murray ME, Lowe VJ, Boeve BF, Ferman TJ, Przybelski SA, et al. Dementia with Lewy bodies: basis of cingulate island sign. Neurology. 2014;83:801–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Minoshima S, Frey KA, Koeppe RA, Foster NL, Kuhl DE. A diagnostic approach in Alzheimer’s disease using three-dimensional stereotactic surface projections of fluorine-18-FDG PET. J Nucl Med. 1995;36:1238–48.

    CAS  PubMed  Google Scholar 

  43. Lim SM, Katsifis A, Villemagne VL, Best R, Jones G, Saling M, et al. The 18F-FDG PET cingulate island sign and comparison to 123I-beta-CIT SPECT for diagnosis of dementia with Lewy bodies. J Nucl Med. 2009;50:1638–45.

    Article  CAS  PubMed  Google Scholar 

  44. Imamura T, Ishii K, Sasaki M, Kitagaki H, Yamaji S, Hirono N. Regional cerebral glucose metabolism in dementia with Lewy bodies and Alzheimer’s disease: a comparative study using positron emission tomography. Neurosci Lett. 1997;235:49–52.

    Article  CAS  PubMed  Google Scholar 

  45. Tilley BS, Patel SR, Goldfinger MH, Pearce RKB, Gentleman SM. Locus coeruleus pathology indicates a continuum of Lewy Body dementia. J Parkinsons Dis. 2021;11:1641–50.

    Article  CAS  PubMed  Google Scholar 

  46. Kantarci K, Boeve BF, Przybelski SA, Lesnick TG, Chen Q, Fields J, et al. FDG PET metabolic signatures distinguishing prodromal DLB and prodromal AD. Neuroimage Clin. 2021;31: 102754.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Zhu L, Zhao W, Chen J, Li G, Qu J. Systematic review and meta-analysis of diagnostic test accuracy (DTA) studies: the role of cerebral perfusion imaging in prognosis evaluation of mild cognitive impairment. Ann Palliat Med. 2022;11:673–83.

    Article  PubMed  Google Scholar 

  48. Kanetaka H, Shimizu S, Inagawa Y, Hirose D, Takenoshita N, Sakurai H, et al. Differentiating mild cognitive impairment, Alzheimer’s disease, and dementia with Lewy bodies using cingulate island sign on perfusion IMP-SPECT. Front Neurol. 2020;11:568438.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Roquet D, Noblet V, Anthony P, Philippi N, Demuynck C, Cretin B, et al. Insular atrophy at the prodromal stage of dementia with Lewy bodies: a VBM DARTEL study. Sci Rep. 2017;7:9437.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  50. Blanc F, Colloby SJ, Philippi N, de Petigny X, Jung B, Demuynck C, et al. Cortical thickness in dementia with Lewy Bodies and Alzheimer’s disease: a comparison of prodromal and dementia stages. PLoS ONE. 2015;10:e0127396.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Firbank MJ, O’Brien JT, Durcan R, Allan LM, Barker S, Ciafone J, et al. Mild cognitive impairment with Lewy bodies: blood perfusion with arterial spin labelling. J Neurol. 2021;268:1284–94.

    Article  PubMed  Google Scholar 

  52. Duan W, Zhou GD, Balachandrasekaran A, Bhumkar AB, Boraste PB, Becker JT, et al. Cerebral blood flow predicts conversion of mild cognitive impairment into Alzheimer’s disease and cognitive decline: an arterial spin labeling follow-up study. J Alzheimers Dis. 2021;82:293–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Ishii K, Yamaji S, Kitagaki H, Imamura T, Hirono N, Mori E. Regional cerebral blood flow difference between dementia with Lewy bodies and AD. Neurology. 1999;53:413–6.

    Article  CAS  PubMed  Google Scholar 

  54. Catafau AM, Tolosa E. Impact of dopamine transporter SPECT using 123I-Ioflupane on diagnosis and management of patients with clinically uncertain Parkinsonian syndromes. Mov Disord. 2004;19:1175–82.

    Article  PubMed  Google Scholar 

Download references

Funding

This study received no funding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Nakata.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Informed consent

All investigations were carried out according to the Declaration of Helsinki. We confirm that we have read the journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines. All co-authors have read and approved the submission. This study was approved by the ethics committee of Hyogo Brain and Heart Center (now called Hyogo Prefectural Harima-Himeji General Medical Center) and the requirement to obtain written informed consent was waived because this was a retrospective study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakata, T., Shimada, K., Iba, A. et al. Differential diagnosis of MCI with Lewy bodies and MCI due to Alzheimer’s disease by visual assessment of occipital hypoperfusion on SPECT images. Jpn J Radiol 42, 308–318 (2024). https://doi.org/10.1007/s11604-023-01501-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-023-01501-3

Keywords

Navigation