Skip to main content

Advertisement

Log in

Introduction to deep learning: minimum essence required to launch a research

  • Invited Review
  • Published:
Japanese Journal of Radiology Aims and scope Submit manuscript

Abstract

In the present article, we provide an overview on the basics of deep learning in terms of technical aspects and steps required to launch a deep learning research. Deep learning is a branch of artificial intelligence, which has been attracting interest in many domains. The essence of deep learning can be compared to teaching an elementary school student how to differentiate magnetic resonance images, and we first explain the concept using this analogy. Deep learning models are composed of many layers including input, hidden, and output ones. Convolutional neural networks are suitable for image processing as convolutional and pooling layers allow successfully performing extraction of image features. The process of conducting a research work with deep learning can be divided into the nine following steps: computer preparation, software installation, specifying the function, data collection, data edits, dataset creation, programming, program execution, and verification of results. Concerning widespread expectations, deep learning cannot be applied to solve tasks other than those set in specification; moreover, it requires a large amount of data to train and has difficulties with recognizing unknown concepts. Deep learning cannot be considered as a universal tool, and researchers should have thorough understanding of the features of this technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Silver D, Huang A, Maddison CJ, Guez A, Sifre L, van den Driessche G, et al. Mastering the game of Go with deep neural networks and tree search. Nature. 2016. https://doi.org/10.1038/nature16961.

    Article  PubMed  PubMed Central  Google Scholar 

  2. The Next Rembrandt [Internet]. [place unknown]: The Next Rembrandt. https://www.nextrembrandt.com/. Accessed 8 Mar 2020.

  3. Attia ZI, Noseworthy PA, Lopez-Jimenez F, Asirvatham SJ, Deshmukh AJ, Gersh BJ, et al. An artificial intelligence-enabled ECG algorithm for the identification of patients with atrial fibrillation during sinus rhythm: a retrospective analysis of outcome prediction. Lancet. 2019. https://doi.org/10.1016/S0140-6736(19)31721-0.

    Article  PubMed  Google Scholar 

  4. Mori Y, Kudo SE, Misawa M, Saito Y, Ikematsu H, Hotta K, et al. Real-time use of artificial intelligence in identification of diminutive polyps during colonoscopy: a prospective study. Ann Intern Med. 2018. https://doi.org/10.7326/m18-0249.

    Article  PubMed  Google Scholar 

  5. Yamamoto Y, Tsuzuki T, Akatsuka J, Ueki M, Morikawa H, Numata Y, et al. Automated acquisition of explainable knowledge from unannotated histopathology images. Nat Commun. 2019. https://doi.org/10.1038/s41467-019-13647-8.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, et al. Deep learning: a primer for radiologists. Radiographics. 2017. https://doi.org/10.1148/rg.2017170077.

    Article  PubMed  Google Scholar 

  7. Erickson BJ, Korfiatis P, Akkus Z, Kline TL. Machine learning for medical imaging. Radiographics. 2017. https://doi.org/10.1148/rg.2017160130.

    Article  PubMed  Google Scholar 

  8. Schalekamp S, van Ginneken B, Karssemeijer N, Schaefer-Prokop CM. Chest radiography: new technological developments and their applications. Semin Respir Crit Care Med. 2014. https://doi.org/10.1055/s-0033-1363447.

    Article  PubMed  Google Scholar 

  9. Schalekamp S, Van Ginneken B, Koedam E, Snoeren MM, Tiehuis AM, Wittenberg R, et al. Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images. Radiology. 2014. https://doi.org/10.1148/radiol.14131315.

    Article  PubMed  Google Scholar 

  10. ClearRead Xray [Internet]. Miamisburg: Riverain Technologies. https://www.riveraintech.com/clearread-xray/. Accessed 8 Mar 2020.

  11. Lo SB, Freedman MT, Gillis LB, White CS, Mun SK. JOURNAL CLUB: computer-aided detection of lung nodules on CT with a computerized pulmonary vessel suppressed function. Am J Roentgenol. 2018. https://doi.org/10.2214/AJR.17.18718.

    Article  Google Scholar 

  12. ClearRead CT [Internet]. Miamisburg: Riverain Technologies. https://www.riveraintech.com/clearread-ct/. Accessed 8 Mar 2020.

  13. Ueda D, Yamamoto A, Nishimori M, Shimono T, Doishita S, Shimazaki A, et al. Deep learning for MR angiography: automated detection of cerebral aneurysms. Radiology. 2019. https://doi.org/10.1148/radiol.2018180901.

    Article  PubMed  PubMed Central  Google Scholar 

  14. LPIXEL Inc. [Internet]. Tokyo; LPIXEL Inc.. https://lpixel.net/en/. Accessed 8 Mar 2020.

  15. Cover T, Hart P. Nearest neighbor pattern classification. IEEE Trans Inf Theory. 1967. https://doi.org/10.1109/tit.1967.1053964.

    Article  Google Scholar 

  16. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995. https://doi.org/10.1007/bf00994018.

    Article  Google Scholar 

  17. Quinlan JR. Induction of decision trees. Mach Learn. 1986. https://doi.org/10.1007/bf00116251.

    Article  Google Scholar 

  18. Ben-Bassat M, Klove KL, Weil MH. Sensitivity analysis in bayesian classification models: multiplicative deviations. IEEE Trans Pattern Anal Mach Intell. 1980. https://doi.org/10.1109/tpami.1980.4767015.

    Article  PubMed  Google Scholar 

  19. Bengio Y, Courville A, Vincent P. Representation learning: a review and new perspectives. IEEE Trans Pattern Anal Mach Intell. 2013;35(8):1798–828.

    Article  Google Scholar 

  20. Hornik K, Stinchcombe M, White H. Multilayer feedforward networks are universal approximators. Neural Netw. 1989. https://doi.org/10.1016/0893-6080(89)90020-8.

    Article  Google Scholar 

  21. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998. https://doi.org/10.1109/5.726791.

    Article  Google Scholar 

  22. Murakami K, Kido S, Hashimoto N, Hirano Y, Wakasugi K, Inai K. Computer-aided classification of diffuse lung disease patterns using convolutional neural network. Int J Comput Assist Radiol Surg. 2017;12(1):138–9.

    Google Scholar 

  23. Noguchi T, Higa D, Asada T, Kawata Y, Machitori A, Shida Y, et al. Artificial intelligence using neural network architecture for radiology (AINNAR): classification of MR imaging sequences. Jpn J Radiol. 2018;36(12):691–7.

    Article  Google Scholar 

  24. Krizhevsky A, Sutskever I, Hinton GE. Imagenet classification with deep convolutional neural networks. In: NIPS'12: Proceedings of the 25th international conference on neural information processing systems, vol. 1. 2012. pp. 1097–105.

  25. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:14091556. 2014.

  26. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016:770–8.

  27. Lee JH, Kim KG. Applying deep learning in medical images: the case of bone age estimation. Healthc Inform Res. 2018. https://doi.org/10.4258/hir.2018.24.1.86.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Poplin R, Varadarajan AV, Blumer K, Liu Y, McConnell MV, Corrado GS, et al. Prediction of cardiovascular risk factors from retinal fundus photographs via deep learning. Nat Biomed Eng. 2018. https://doi.org/10.1038/s41551-018-0195-0.

    Article  PubMed  Google Scholar 

  29. Girshick R, Donahue J, Darrell T, Malik J. Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2014:580–7.

  30. Girshick R. Fast r-cnn. In: Proceedings of the IEEE international conference on computer vision. 2015:1440–8.

  31. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu C-Y, et al. SSD: Single shot multibox detector. In: Leibe B, Matas J, Sebe N, Welling M, editors. Computer vision – ECCV 2016. ECCV 2016. Lecture notes in computer science, vol. 9905. Cham: Springer; 2016. pp. 21–37.

  32. Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2016:779–88.

  33. Teramoto A. Dei-pu Ra-ningu [Deep Learning]. In: Fujita H (2019). Iryou AI to Dei-pu Ra-ningu Shiri-zu: Iyou Gazou Dei-pu Ra-ning Nyuumon [Medical AI and Deep Learning Series: Introduction to Medical Image Deep Learning]. 1st ed. Tokyo: Ohmsha, pp. 26–40. Japanese.

  34. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 2015:3431–40.

  35. Badrinarayanan V, Kendall A, Cipolla R. Segnet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans Pattern Anal Mach Intell. 2017;39(12):2481–95.

    Article  Google Scholar 

  36. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. 2015:234–41.

  37. Higaki T, Nakamura Y, Tatsugami F, Nakaura T, Awai K. Improvement of image quality at CT and MRI using deep learning. Jpn J Radiol. 2019;37(1):73–80.

    Article  Google Scholar 

  38. Dong C, Loy CC, He K, Tang X. Image super-resolution using deep convolutional networks. IEEE Trans Pattern Anal Mach Intell. 2015;38(2):295–307.

    Article  Google Scholar 

  39. Umehara K, Ota J, Ishida T. Application of super-resolution convolutional neural network for enhancing image resolution in chest CT. J Digit Imaging. 2018;31(4):441–50.

    Article  Google Scholar 

  40. Umehara K, Ota J, Ishida T. Super-resolution imaging of mammograms based on the super-resolution convolutional neural network. Open J Med Imaging. 2017;7(4):180–95.

    Article  Google Scholar 

  41. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, et al. Generative adversarial nets. In: NIPS'14: Proceedings of the 27th international conference on neural information processing systems, vol. 2. 2014. pp. 2672–80.

  42. Nakata N. Recent technical development of artificial intelligence for diagnostic medical imaging. Jpn J Radiol. 2019;37(2):103–8.

    Article  Google Scholar 

  43. Mirza M, Osindero S. Conditional generative adversarial nets. arXiv preprint arXiv:14111784. 2014.

  44. Zhu J-Y, Park T, Isola P, Efros AA. Unpaired image-to-image translation using cycle-consistent adversarial networks. In: Proceedings of the IEEE international conference on computer vision. 2017:2223–32.

  45. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–7.

    Article  CAS  Google Scholar 

  46. LeCun Y, Cortes C, Burges CJ. The MNIST database of handwritten digits [Internet]. New York; [publisher unknown]. http://yann.lecun.com/exdb/mnist. Accessed 8 Mar 2020.

  47. Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In: Proceedings of the fourteenth international conference on artificial intelligence and statistics. 2011:315–23.

  48. Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O. Deep learning with convolutional neural network in radiology. Jpn J Radiol. 2018;36(4):257–72.

    Article  Google Scholar 

  49. Hashimoto M. Seeing is Believing, Considering is Understanding, Predicting is Discovering. Lecture presented at: The 78th Annual Meeting of Japan Radiological Society. 2019 Apr 11–14. Lecture material [xlsx file on the Internet]. http://rad.med.keio.ac.jp/wp/wp-content/uploads/2019/04/DeepLearning_Excel_ver1.0.xlsx.Japanese. Accessed 8 Mar 2020.

  50. Kobayashi Y. Deep Learning nyuumon: nyu-raru nettowa-ku sekkei no kiso [Introduction to deep learning: basics for designing neural networks] [video on the Internet]. Tokyo; Sony Network Communications Inc.; 2019 Feb 26 [reviewed 2020 Mar 8]; [18 min., 37 sec]. https://www.youtube.com/watch?v=O3qm6qZooP0,Japanese. Accessed 8 Mar 2020

  51. Saito K. Gakusyuu ni Kansuru Tekunikku [Techniques for Learning]. In: Saito K (2016). Zero kara tsukuru Deep Learning: Python de manabu dei-pura-ningu no riron to zissou [Building Deep Learning from Scratch: The Theory and Implementation of Deep Learning in Python]. 1st ed. Tokyo: O'Reilly Japan, pp. 165–203. Japanese.

  52. Tieleman T, Hinton G. Lecture 6.5-rmsprop: divide the gradient by a running average of its recent magnitude. COURSERA Neural Netw Mach Learn. 2012;4:26–31.

    Google Scholar 

  53. Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimization. J Mach Learn Res. 2011;12:2121–59.

    Google Scholar 

  54. Kingma DP, Ba J. Adam: a method for stochastic optimization. arXiv preprint arXiv:14126980. 2014.

  55. Ioffe S, Szegedy C. Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:150203167. 2015.

  56. Keras: The Python Deep Learning library [Internet]. [place unknown: publisher unknown]. https://keras.io/. Accessed 8 Mar 2020.

  57. Multimedia [Internet]. Santa Clara: NVIDIA Corporation; c 2020. https://nvidianews.nvidia.com/multimedia. Accessed 8 Mar 2020.

  58. Google Colaboratory toha [About Google Colaboratory] [Internet]. [place unknown: publisher unknown]. https://colab.research.google.com/notebooks/intro.ipynb.Japanese. Accessed 8 Mar 2020.

  59. Microsoft Azure. Invent with purpose [Internet]. Seattle: Microsoft; c 2020. https://azure.microsoft.com/en-us/. Accessed 8 Mar 2020.

  60. Neural Network Console [Internet]. Tokyo; Sony Network Communications Inc. https://dl.sony.com/. Accessed 8 Mar 2020.

  61. Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. Tensorflow: Large-scale machine learning on heterogeneous distributed systems. arXiv preprint arXiv:160304467. 2016.

  62. CUDA Toolkit 10.2 Download [Internet]. Santa Clara: NVIDIA Corporation; c 2020. https://developer.nvidia.com/cuda-downloads. Accessed 8 Mar 2020.

  63. NVIDIA cuDNN [Internet]. Santa Clara: NVIDIA Corporation; c 2020. https://developer.nvidia.com/cudnn. Accessed 8 Mar 2020.

  64. Visual Studio Best-in-class tools for any developer [Internet]. Seattle: Microsoft; c 2020. https://visualstudio.microsoft.com/. Accessed 8 Mar 2020.

  65. Anaconda | The World's Most Popular Data Science Platform [Internet]. Austin: Anaconda, Inc.; c 2020. https://www.anaconda.com/. Accessed 8 Mar 2020.

  66. Project Jupyter | Home [Internet]. [place unknown]: Project Jupyter; c 2020 [updated 2020 Jan 28; cited 2020 Mar 8]. https://jupyter.org/. Accessed 8 Mar 2020.

  67. Collette A and contributors. HDF5 for Python [Internet]. [place unknown: publisher unknown]; c 2014. https://docs.h5py.org/en/stable/. Accessed 8 Mar 2020.

  68. Matplotlib: Visualization with Python [Internet]. [placce unknown]: The Matplotlib development team; c 2002–2018 [updated 2020 Mar 4; cited 2020 Mar 8]. https://matplotlib.org/. Accessed 8 Mar 2020.

  69. Clark A and contributors . Pillow [Internet]. [place unknown: publisher unknown]; c 1995–2020. https://pillow.readthedocs.io/en/stable/. Accessed 8 Mar 2020.

  70. pandas [Internet]. [place unknown: publisher unknown]. https://pandas.pydata.org/. Accessed 8 Mar 2020.

  71. SciPy.org [Internet]. [placce unknown]: TSciPy developers; c 2020. https://www.scipy.org/. Accessed 8 Mar 2020.

  72. SPYDER [Internet]. [placce unknown]: The Spyder Website Contributors; c 2018. https://www.spyder-ide.org/. Accessed 8 Mar 2020.

  73. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: machine learning in Python. J Mach Learn Res. 2011;12:2825–30.

    Google Scholar 

  74. Cython: C-Extensions for Python [Internet]. [place unknown: publisher unknown]. https://cython.org/. Accessed 8 Mar 2020.

  75. OpenCV [Internet]. [placce unknown]: OpenCV team; c 2020. https://opencv.org/. Accessed 8 Mar 2020.

  76. Pydicom website. https://pydicom.github.io/. Accessed Feb 2020.

  77. Hara T. Kankyou Kouchiku [Environment Construction]. In: Fujita H, Hara T (2019). Iryou AI to Dei-pu Ra-ningu Shiri-zu: Hyoujun Iyou Gazou no tame no Dei-pu Ra-ning Jissen Hen [Medical AI and Deep Learning Series: Standard Deep Learning for Medical Images–Practice ver.-]. 1st ed. Tokyo: Ohmsha, pp. 1–26. Japanese.

  78. NVIDIA DIGITS [Internet]. Santa Clara: NVIDIA Corporation; c 2020. https://developer.nvidia.com/digits. Accessed 8 Mar 2020.

  79. Roth HR, Lu L, Liu J, Yao J, Seff A, Cherry K, et al. Improving computer-aided detection using convolutional neural networks and random view aggregation. IEEE Trans Med Imaging. 2016. https://doi.org/10.1109/tmi.2015.2482920.

    Article  PubMed  Google Scholar 

  80. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging. 2016. https://doi.org/10.1109/tmi.2016.2528162.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R. Dropout: a simple way to prevent neural networks from overfitting. J Mach Learn Res. 2014;15(1):1929–58.

    Google Scholar 

  82. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-cam: Visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE international conference on computer vision. 2017:618–26.

  83. Binder A, Montavon G, Lapuschkin S, Müller K-R, Samek W. Layer-wise relevance propagation for neural networks with local renormalization layers. In: International Conference on Artificial Neural Networks. 2016:63–71.

Download references

Acknowledgements

The authors would like to thank Enago (www.enago.jp) for English language review. The authors would like to acknowledge NVIDIA for providing Figs. 11 and 12. The authors are grateful to Soichiro Tateishi, a radiological technologist in Osaka International Cancer Institute, for providing sample MR images in Figs. 1 and 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomohiro Wataya.

Ethics declarations

Conflict of interest

Yuki Suzuki and Shoji Kido receive research funding from Fujifilm Co., Ltd., but all the authors declare no conflicts of interest associated with this manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wataya, T., Nakanishi, K., Suzuki, Y. et al. Introduction to deep learning: minimum essence required to launch a research. Jpn J Radiol 38, 907–921 (2020). https://doi.org/10.1007/s11604-020-00998-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11604-020-00998-2

Keywords

Navigation