Skip to main content
Log in

Shoreline delineation and change analysis in response to sea level rise and coastal bathymetry along the coast of Visakhapatnam, India using high-resolution optical imagery

  • Review Article - Hydrology and Hydraulics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Coastal morphology is persistently changing in structure and environment because of natural and anthropogenic effects. Consequently, determining the spatiotemporal variability of coastal areas has become a significant source of concern. The study focuses on automatic delineation of the shoreline using edge detection algorithms; quantification of the morphological changes using a digital shoreline analysis system (DSAS); and retrieval of coastal bathymetry using linear wave dispersion relation from optical imagery for the period 2005–2020. The Canny algorithm shows efficiency in detecting shoreline precisely (95.6%). The highest erosions for net shoreline movement (NSM) are −31.71 m and −50.43 m/yr for end point rate (EPR) during 2014–2017, whereas the maximum accretions for NSM are 25.37 m and 8.64 m/yr for EPR during 2011–2014. The linear regression rate (LRR) and weighted linear regression (WLR) measure shoreline shift over a 15-year period, with the maximum rates of accretion and erosion being 1.01 m/yr and −1.02 m/yr, respectively. Shoreline prediction was carried out using the Kalman filter model for the year 2021 and was concurrently validated with field DGPS measurements. The retrieved bathymetry over the study area agrees with in situ bathymetry data with a mean bias error (MBE) of 0.39, a correlation coefficient (r) of 0.821, and a coefficient of determination (R2) of 0.742. The study also illustrates the effects of changes in mean sea level (MSL) height and coastal bathymetry on coastal morphology. Coastal bathymetry shows an inverse relationship (r = −0.765) with NSM, whereas MSL height shows a positive relationship with NSM (r = 0.403).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Baig MRI, Ahmad IA, Shahfahad, Tayyab M, Rahman A (2020) Analysis of shoreline changes in Vishakhapatnam coastal tract of Andhra Pradesh, India: an application of digital shoreline analysis system (DSAS). Ann GIS 26(4):361–376

    Article  Google Scholar 

  • Bergsma EW, Almar R (2020) Coastal coverage of ESA’Sentinel 2 mission. Adv Space Res 65(11):2636–2644

    Article  Google Scholar 

  • Bezaury-Creel JE (2005) Protected areas and coastal and ocean management in México. Ocean Coast Manage 48(11–12):1016–1046. https://doi.org/10.1016/j.ocecoaman.2005.03.004

    Article  Google Scholar 

  • Bruno MF, Molfetta MG, Pratola L, Mossa M, Nutricato R, Morea A et al (2019) A combined approach of field data and earth observation for coastal risk assessment. Sensors 19(6):1399

    Article  Google Scholar 

  • Caballero I, Stumpf RP (2019) Retrieval of nearshore bathymetry from Sentinel-2A and 2B satellites in South Florida coastal waters. Estuar Coast Shelf Sci 226:106277

    Article  Google Scholar 

  • Calkoen CJ, Hesselmans GHFM, Wensink GJ, Vogelzang J (2001) The bathymetry assessment system: efficient depth mapping in shallow seas using radar images. Int J Remote Sens 22(15):2973–2998. https://doi.org/10.1080/01431160116928

    Article  Google Scholar 

  • Canny J (1986) A computational approach to edge detection. IEEE Trans Pattern Anal Mach Intell PAMI-8(6):679–698. https://doi.org/10.1109/TPAMI.1986.4767851

    Article  Google Scholar 

  • Chand P, Acharya P (2010) Shoreline change and sea level rise along coast of Bhitarkanika wildlife sanctuary, Orissa: an analytical approach of remote sensing and statistical techniques. Int J Geomat Geosci 1(3):436

    Google Scholar 

  • Cherian A, Chandrasekar N, Gujar AR, Rajamanickam GV (2012) Coastal erosion assessment along the southern Tamilnadu coast, India. Int J Earth Sci Eng 5:352–357

    Google Scholar 

  • Ciritci D, Türk T (2019) Automatic detection of Shoreline change by geographical Information system (GIS) and remote sensing in the Göksu Delta, Turkey. J Indian Soc Remote Sens 47:233–243. https://doi.org/10.1007/s12524-019-00947-1

    Article  Google Scholar 

  • Crowell M, Leikin H, & Buckley MK (1999) Evaluation of coastal erosion hazards study: an overview. J Coast Res, 2–9. http://www.jstor.org/stable/25736179.

  • Culver M, Schubel J, Davidson M, Haines J (2010) Building a sustainable community of coastal leaders to deal with sea level rise and inundation. acquadocs.org

  • Danilo C, Melgani F (2016) Wave period and coastal bathymetry using wave propagation on optical images. IEEE Trans Geosci Remote Sens 54(11):6307–6319

    Article  Google Scholar 

  • Davies JL (1957) The importance of cut and fill in the development of sand beach ridges. Aust J Sci 20:105–111

    Google Scholar 

  • Egghe L, Leydesdorff L (2009) The relation between Pearson’s correlation coefficient r and Salton’s cosine measure. J Am Soc Inform Sci Technol 60(5):1027–1036

    Article  Google Scholar 

  • El-Asmar HM, Hereher ME (2011) Change detection of the coastal zone east of the Nile Delta using remote sensing. Environ Earth Sci 62(4):769–777. https://doi.org/10.1007/s12665-010-0564-9

    Article  Google Scholar 

  • Gopal B, Chauhan M (2006) Biodiversity and its conservation in the Sundarban mangrove ecosystem. Aquat Sci 68(3):338–354. https://doi.org/10.1007/s00027-006-0868-8

    Article  Google Scholar 

  • Guenther GC (2007) Airborne lidar bathymetry. Dig Elevat Model Technol Appl DEM Users Manual 2:253–320

    Google Scholar 

  • Guneroglu A (2015) Coastal changes and land use alteration on Northeastern part of Turkey. Ocean Coastal Manage 118:225–233. https://doi.org/10.1016/j.ocecoaman.2015.06.019

    Article  Google Scholar 

  • Hakkou M et al (2018) Multi-decadal assessment of shoreline changes using geospatial tools and automatic computation in Kenitra coast. Morocco Ocean Coast Manage 163:232–239. https://doi.org/10.1016/j.ocecoaman.2018.07.003

    Article  Google Scholar 

  • Himmelstoss EA et al. (2018) Digital Shoreline analysis system (DSAS) version 5.0 user guide. Open-File Report 2018–1179. https://doi.org/10.3133/ofr20181179

  • Hossain MS, Yasir M, Wang P, Ullah S, Jahan M, Hui S, Zhao Z (2021) Automatic shoreline extraction and change detection: a study on the southeast coast of Bangladesh. Mar Geol 441:106628. https://doi.org/10.1016/j.margeo.2021.106628

    Article  Google Scholar 

  • Ji L, Zhang L, Wylie B (2009) Analysis of dynamic thresholds for the normalized difference water index. Photogrammetr Eng Remote Sens 75(11):1307–1317. https://doi.org/10.14358/PERS.75.11.1307

    Article  Google Scholar 

  • Kabir MA, Salauddin M, Hossain KT, Tanim IA, Saddam MMH, Ahmad AU (2020) Assessing the shoreline dynamics of Hatiya Island of Meghna estuary in Bangladesh using multiband satellite imageries and hydro-meteorological data. Region Stud Marine Sci 35:101167. https://doi.org/10.1016/j.rsma.2020.101167

    Article  Google Scholar 

  • Kaliraj S, Chandrasekar N (2012) Geo-processing model on coastal vulnerability index to explore risk zone along the south west coast of Tamilnadu. India Int J Earth Sci Eng 5(5):1138–1147

    Google Scholar 

  • Kaliraj S, Chandrasekar N, Magesh NS (2014) Impacts of wave energy and littoral currents on shoreline erosion/accretion along the south-west coast of Kanyakumari, Tamil Nadu using DSAS and geospatial technology. Environ Earth Sci 71(10):4523–4542. https://doi.org/10.1007/s12665-013-2845-6

    Article  Google Scholar 

  • Kalman RE (1960) A new approach to linear filtering and prediction problems. Trans ASME J Basic Eng 82((series D)):35–45

    Article  Google Scholar 

  • Khalid MD, Omran EF (2010) Automated techniques for quantification of beach change rates using Landsat series along the North-eastern Nile Delta. Egypt J Oceanogr Marine Sci 1(2):028–039

    Google Scholar 

  • Kudale MD (2010) Impact of port development on the coastline and the need for protection. http://nopr.niscair.res.in/handle/123456789/10808.

  • Kumar TS, Mahendra RS, Nayak S, Radhakrishnan K, Sahu KC (2010) Coastal vulnerability assessment for Orissa State, east coast of India. J Coastal Res 26(3):523–534

    Article  Google Scholar 

  • Limber PW, Murray AB (2015) Sea stack formation and the role of abrasion on beach-mantled headlands. Earth Surf Proc Land 40(4):559–568https://doi.org/10.1002/esp.3667.

    Article  Google Scholar 

  • McFeeters SK (1996) The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features. Int J Remote Sens 17(7):1425–1432. https://doi.org/10.1080/01431169608948714

    Article  Google Scholar 

  • Mills JP, Buckley SJ, Mitchell HL, Clarke PJ, Edwards SJ (2005) A geomatics data integration technique for coastal change monitoring. Earth Surf Processes Landforms J British Geomorphol Res Group 30(6):651–664

    Article  Google Scholar 

  • Moore LJ (2000) Shoreline mapping techniques. J Coastal Res 1:111–124

    Google Scholar 

  • Moore LJ, Patsch K, List JH, Williams SJ (2014) The potential for sea-level-rise-induced barrier island loss: insights from the Chandeleur Islands, Louisiana, USA. Mar Geol 355:244–259

    Article  Google Scholar 

  • Mukhopadhyay A et al (2012) Automatic shoreline detection and future prediction: a case study on Puri Coast, Bay of Bengal. India Eur J Remote Sens 45(1):201–213. https://doi.org/10.5721/EuJRS20124519

    Article  Google Scholar 

  • Nadernejad E, Sharifzadeh S, Hassanpour H (2008) Edge detection techniques: evaluations and comparisons. Appl Math Sci 2(31):1507–1520

    Google Scholar 

  • Naga Kumar K. Ch. V. et al. (2019) Chapter 7 - Erosional responses of Eastern and Western coastal regions of India, Under global, regional, and local scale causes. Coastal zone management. https://doi.org/10.1016/B978-0-12-814350-6.00007-0.

  • O’Connor MI, Piehler MF, Leech DM, Anton A, Bruno JF (2009) Warming and resource availability shift food web structure and metabolism. PLoS Biol 7(8):e1000178. https://doi.org/10.1371/journal.pbio.1000178

    Article  CAS  Google Scholar 

  • Pilkey OH, Hume TM (2001) The shoreline erosion problem: lessons from the past. Water Atmos 9(2):22–23

    Google Scholar 

  • Prabhakara Rao P, Nair MM, Raju DV (1985) Assessment of the role of remote sensing techniques in monitoring shoreline changes: a case study of the Kerala coast. Int J Remote Sens 6(3–4):549–558. https://doi.org/10.1080/01431168508948477

    Article  Google Scholar 

  • Praveen B et al (2020) Analyzing trend and forecasting of rainfall changes in India using non-parametrical and machine learning approaches. Sci Rep 10:10342. https://doi.org/10.1038/s41598-020-67228-7

    Article  CAS  Google Scholar 

  • Rajawat AS, Chauhan HB, Ratheesh R, Rode S, Bhanderi RJ, Mahapatra M et al (2015) Assessment of coastal erosion along the Indian coast on 1: 25,000 scale using satellite data of 1989–1991 and 2004–2006 time frames. Current Sci 25:347–353

    Google Scholar 

  • Raju KP, Vaidyanadhan R (1978) Geomorphology of Visakhapatnam, Andhra Pradesh. Geol Soc India 19(1):26–34

    Google Scholar 

  • Ramkumar M, Menier D, Mathew M, Santosh M (2016) Geological, geophysical, and inherited tectonic imprints on the climate and contrasting coastal geomorphology of the Indian peninsula. Gondwana Res 36:65–93. https://doi.org/10.1016/j.gr.2016.04.008

    Article  Google Scholar 

  • Rao MV, Rao ND (1968) A note on the origin of Waltair highlands. Curr Sci 37(15):438–439

    Google Scholar 

  • Rao N et al (2008) Sea-level rise and coastal vulnerability: an assessment of Andhra Pradesh coast, India through remote sensing and GIS. J Coast Conserv 12(4):195–207

    Article  Google Scholar 

  • Rao N et al (2010) Impacts of sediment retention by dams on delta shoreline recession: evidences from the Krishna and Godavari deltas. India Earth Surf Process Landf 35:817–827. https://doi.org/10.1002/esp.1977

    Article  Google Scholar 

  • Rao N et al (2011) Climate change and sea-level rise: Impact on agriculture along Andhra Pradesh coast—A geomatics analysis. J Indian Soc Remote Sens 39(3):415–422

    Article  Google Scholar 

  • Rao KN, Saito Y, Nagakumar KCV, Demudu G, Basavaiah N, Rajawat AS et al (2012) Holocene environmental changes of the Godavari Delta, east coast of India, inferred from sediment core analyses and AMS 14C dating. Geomorphology 175:163–175

    Google Scholar 

  • Samanta S, Paul SK (2016) Geospatial analysis of shoreline and land use/land cover changes through remote sensing and GIS techniques. Model Earth Syst Environ 2(3):1–8. https://doi.org/10.1007/s40808-016-0180-0

    Article  Google Scholar 

  • Saranathan E, Chandrasekaran R, Soosai Manickaraj D, Kannan M (2011) Shoreline changes in Tharangampadi village, Nagapattinam district, Tamil Nadu, India—a case study. J Indian Soc Remote Sens 39(1):107–115. https://doi.org/10.1007/s12524-010-0052-4

    Article  Google Scholar 

  • Saravanan S, Parthasarathy KSS, & Sivaranjani S (2019) Assessing coastal aquifer to seawater intrusion: application of the GALDIT method to the Cuddalore Aquifer, India. In: Coastal Zone Management, pp. 233–250. Elsevier. https://doi.org/10.3390/s19071552.

  • Schureman P (1994) Manual of harmonic analysis and prediction of tides (No. 98). US Department of Commerce, Coast and Geodetic Survey.

  • Sheik M (2011) A shoreline change analysis along the coast between Kanyakumari and Tuticorin, India, using digital shoreline analysis system. Geo-Spatial Inf Sci 14(4):282–293

    Article  Google Scholar 

  • Suhail M, Chandra R, Muralikrishnan S, & Nagamani PV (2021) Estimation of shallow water bathymetry using linear wave dispersion theory on a single resourcesat-2 LISS-IV image near Indian East Coast. In: 2021 IEEE International India Geoscience and Remote Sensing Symposium (InGARSS), pp. 98–101. IEEE.

  • Swargha K, Rodrigues P (2012) Performance amelioration of edge detection algorithms using concurrent programming. Proc Eng 38:2824–2831. https://doi.org/10.1016/j.proeng.2012.06.331

    Article  Google Scholar 

  • Thieler ER, Himmelstoss EA, Zichichi JL & Ergul A (2009) The Digital Shoreline Analysis System (DSAS) version 4.0-an ArcGIS extension for calculating shoreline change (No. 2008–1278). US Geological Survey.. https://doi.org/10.3133/ofr20081278

  • Vikranth T, Srinivasan R, Sudhakar T, & RamaKrishna SSVS (2020) Design and development shallow water surface drifter to study rip current behavior at coastal Andhra Pradesh in real time. In:Global Oceans 2020: Singapore–US Gulf Coast, pp. 1–10. IEEE. https://doi.org/10.1109/IEEECONF38699.2020.9389059.

  • Vivek G et al (2016) Sachikanta Nanda coastal vulnerability assessment for North East coast of Andhra Pradesh. India Int J Remote Sens Geosci (IJRSG) 5:1–7

    Google Scholar 

  • Vukadinov D, Jovanovic R, Tuba MILAN (2017) An algorithm for coastline extraction from satellite imagery. Int J Comput 2:8–15

    Google Scholar 

  • Wernette P, Shortridge A, Lusch DP, Arbogast AF (2017) Accounting for positional uncertainty in historical shoreline change analysis without ground reference information. Int J Remote Sens 38(13):3906–3922. https://doi.org/10.1080/01431161.2017.1303218

    Article  Google Scholar 

  • Yasir M, Sheng H, Fan H, Nazir S, Niang AJ, Salauddin M, Khan S (2020) Automatic coastline extraction and changes analysis using remote sensing and GIS technology. IEEE Access 8:180156–180170

    Article  Google Scholar 

  • Yasir M et al (2021) A spatiotemporal change detection analysis of coastline data in Qingdao, East China. Sci Prog 4:1–10. https://doi.org/10.1155/2021/6632450

    Article  Google Scholar 

  • Yeon YJ, Lee JL (2021) Cost comparison between hard and soft approaches adapted as preventive methods of beach erosion. J Coast Res 114(SI):519–523

    Google Scholar 

Download references

Acknowledgements

The authors would like to express their sincere gratitude to the Director, National Remote Sensing Center (NRSC), for their continuous support and encouragement. The authors would like to thank Deputy Director (DD), Earth and Climate Science Area (ECSA) and all the collaborative institutions for providing in situ data to carry out this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ibrahim Shaik.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Additional information

Edited by Dr. Achilleas Samaras (ASSOCIATE EDITOR) / Prof. Jochen Aberle (CO-EDITOR-IN-CHIEF).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 796 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaik, I., Suhail, M. & Nagamani, P.V. Shoreline delineation and change analysis in response to sea level rise and coastal bathymetry along the coast of Visakhapatnam, India using high-resolution optical imagery. Acta Geophys. (2024). https://doi.org/10.1007/s11600-024-01341-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11600-024-01341-3

Keywords

Navigation