Skip to main content

Advertisement

Log in

Integrated machine learning and remote sensing for groundwater potential mapping in the Mekong Delta in Vietnam

  • Research Article - Hydrology and Hydraulics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Evaluating groundwater potential is critical for the socioeconomic development of Vietnam. This research aims to assess the underground water potential in the country’s Mekong Delta using the machine learning (ML) such as support vector machines (SVM), CatBoost (CB), K-nearest neighbors (KNN), random forest (RF) and AdaBoost (ADB). The problem of exploitation of groundwater resources in the delta is aggravated due to global warming and growth of population. In total, 146 groundwater points and 14 drivers (namely elevation, aspect, curvature, slope distance to river and river density, land use, normalized difference built-up index, flow accumulation, rainfall, soil type, normalized difference vegetation index, stream power index, terrain roughness index, and topographic wetness index) were used to assess groundwater potential. Each proposed model was evaluated utilizing area under curve (AUC), root mean square error, coefficient of determination (R2), and mean absolute error. The findings showed that the RF outperformed the others in building of a groundwater potential map. In which, AUC value was estimated at 0.99 and R2 value was estimated at 0.63 then came CB (AUC = 0.98, R2 = 0.56), ADB (AUC = 0.92, R2 = 0.50), SVM (AUC = 0.91, R2 = 0.57), and KNN (AUC = 0.75, R2 = 0.45). The results illustrate the power of ML in assessing groundwater potential and can support decision makers, planners, and local authorities responsible for sustainable groundwater planning in the Mekong Delta and beyond.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of data and materials

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  • Agarwal E, Agarwal R, Garg RD, Garg PK (2013) Delineation of groundwater potential zone: an AHP/ANP approach. J Earth Syst Sci 122:887–898

    Article  Google Scholar 

  • Al-Fugara Ak, Ahmadlou M, Shatnawi R, AlAyyash S, Al-Adamat R, Al-Shabeeb AA-R, Soni S (2022) Novel hybrid models combining meta-heuristic algorithms with support vector regression (SVR) for groundwater potential mapping. Geocarto Int 37(9):2627–2646

    Article  Google Scholar 

  • Al-Fugara Ak, Pourghasemi HR, Al-Shabeeb AR, Habib M, Al-adamat R, Al-Amoush H, Collins AL (2020) A comparison of machine learning models for the mapping of groundwater spring potential. Environ Earth Sci 79:1–19

    Article  Google Scholar 

  • Ao Y, Li H, Zhu L, Ali S, Yang Z (2019) The linear random forest algorithm and its advantages in machine learning assisted logging regression modeling. J Petrol Sci Eng 174:776–789

    Article  CAS  Google Scholar 

  • Arabameri A, Arora A, Pal SC, Mitra S, Saha A, Nalivan OA, Panahi S, Moayedi H (2021a) K-fold and state-of-the-art metaheuristic machine learning approaches for groundwater potential modelling. Water Resour Manag 35:1837–1869

    Article  Google Scholar 

  • Arabameri A, Pal SC, Rezaie F, Nalivan OA, Chowdhuri I, Saha A, Lee S, Moayedi H (2021b) Modeling groundwater potential using novel GIS-based machine-learning ensemble techniques. J Hydrol Reg Stud 36:100848

    Article  Google Scholar 

  • Arulbalaji P, Padmalal D, Sreelash K (2019) GIS and AHP techniques based delineation of groundwater potential zones: a case study from southern Western Ghats, India. Sci Rep 9(1):2082

    Article  CAS  Google Scholar 

  • Avand M, Janizadeh S, Naghibi SA, Pourghasemi HR, Khosrobeigi Bozchaloei S, Blaschke T (2019) A comparative assessment of random forest and k-nearest neighbor classifiers for gully erosion susceptibility mapping. Water 11(10):2076

    Article  Google Scholar 

  • Bagyaraj M, Ramkumar T, Venkatramanan S, Gurugnanam B (2013) Application of remote sensing and GIS analysis for identifying groundwater potential zone in parts of Kodaikanal Taluk, South India. Front Earth Sci 7:65–75

    Article  Google Scholar 

  • Bai Z, Liu Q, Liu Y (2022) Groundwater potential mapping in Hubei region of China using machine learning, ensemble learning, deep learning and AutoML methods. Nat Resour Res 31(5):2549–2569

    Article  Google Scholar 

  • Betrie GD, Tesfamariam S, Morin KA, Sadiq R (2013) Predicting copper concentrations in acid mine drainage: a comparative analysis of five machine learning techniques. Environ Monit Assess 185:4171–4182

    Article  CAS  Google Scholar 

  • Bhatia N (2010) "Survey of nearest neighbor techniques." arXiv preprint arXiv:1007.0085

  • Bien TX, Jaafari A, Van Phong T, Trinh PT, Pham BT (2023) Groundwater potential mapping in the central highlands of Vietnam using spatially explicit machine learning. Earth Sci Inf 16(1):131–146

    Article  Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45:5–32

    Article  Google Scholar 

  • Bretcan P, Tanislav D, Radulescu C, Serban G, Danielescu S, Reid M, Dunea D (2022) Evaluation of shallow groundwater quality at regional scales using adaptive water quality indices. Int J Environ Res Public Health 19(17):10637

    Article  Google Scholar 

  • Bromley J, Sackinger E (1991) Neural-network and k-nearest-neighbor classifiers. Rapport technique, pp 11359–910819

  • Cai L, Hofmann T (2004) Hierarchical document categorization with support vector machines. In: Proceedings of the thirteenth ACM international conference on Information and knowledge management

  • Chen Y, Chen W, Chandra Pal S, Saha A, Chowdhuri I, Adeli B, Janizadeh S, Dineva AA, Wang X, Mosavi A (2022) Evaluation efficiency of hybrid deep learning algorithms with neural network decision tree and boosting methods for predicting groundwater potential. Geocarto Int 37(19):5564–5584

    Article  Google Scholar 

  • Choudhary S, Jain J, Pingale SM, Khare D (2023) A comprehensive review on mapping of groundwater potential zones: past, present and future recommendations. In: Balaji E, Veeraswamy G, Mannala P, Madhav S (eds) Emerging Technologies for Water Supply, Conservation and Management. Springer, Cham, pp 109–132

    Chapter  Google Scholar 

  • Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20:273–297

    Article  Google Scholar 

  • Domingo C, Watanabe O (2000) MadaBoost: a modification of AdaBoost. In: COLT

  • Dorogush AV, Ershov V, Gulin A (2018) CatBoost: gradient boosting with categorical features support. arXiv preprint arXiv:1810.11363

  • El Bilali A, Taleb A, Brouziyne Y (2021) Groundwater quality forecasting using machine learning algorithms for irrigation purposes. Agric Water Manag 245:106625

    Article  Google Scholar 

  • Fix E, Hodges JL (1952) Discriminatory analysis: nonparametric discrimination: Small sample perform

  • Freund Y, Schapire R, Abe N (1999) A short introduction to boosting. J-Jpn Soc Artif Intell 14(771–780):1612

    Google Scholar 

  • Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  Google Scholar 

  • Gayathri K, Marimuthu A (2013) Text document pre-processing with the KNN for classification using the SVM. 2013 In: 7th International conference on intelligent systems and control (ISCO), IEEE

  • Gómez-Escalonilla V, Martínez-Santos P, Martín-Loeches M (2022) Preprocessing approaches in machine-learning-based groundwater potential mapping: an application to the Koulikoro and Bamako regions, Mali. Hydrol Earth Syst Sci 26(2):221–243

    Article  Google Scholar 

  • Hancock J, Khoshgoftaar TM (2020) Medicare fraud detection using catboost. In: 2020 IEEE 21st international conference on information reuse and integration for data science (IRI), IEEE

  • Hancock J, Khoshgoftaar TM (2020) Performance of catboost and xgboost in medicare fraud detection. In: 2020 19th IEEE international conference on machine learning and applications (ICMLA), IEEE

  • Hancock JT, Khoshgoftaar TM (2020c) CatBoost for big data: an interdisciplinary review. J Big Data 7(1):1–45

    Article  Google Scholar 

  • Hasanuzzaman M, Mandal MH, Hasnine M, Shit PK (2022) Groundwater potential mapping using multi-criteria decision, bivariate statistic and machine learning algorithms: evidence from Chota Nagpur Plateau, India. Appl Water Sci 12(4):58

    Article  Google Scholar 

  • Huang G, Wu L, Ma X, Zhang W, Fan J, Yu X, Zeng W, Zhou H (2019) Evaluation of CatBoost method for prediction of reference evapotranspiration in humid regions. J Hydrol 574:1029–1041

    Article  Google Scholar 

  • Ibrahim AA, Ridwan RL, Muhammed MM, Abdulaziz RO, Saheed GA (2020) Comparison of the CatBoost classifier with other machine learning methods. Int J Adv Comput Sci Appl 11(11). https://doi.org/10.14569/IJACSA.2020.0111190

    Article  Google Scholar 

  • Jaafarzadeh MS, Tahmasebipour N, Haghizadeh A, Pourghasemi HR, Rouhani H (2021) Groundwater recharge potential zonation using an ensemble of machine learning and bivariate statistical models. Sci Rep 11(1):5587

    Article  CAS  Google Scholar 

  • Jadhav SD, Channe H (2016) Comparative study of K-NN, naive Bayes and decision tree classification techniques. Int J Sci Res (IJSR) 5(1):1842–1845

    Article  Google Scholar 

  • Kamali Maskooni E, Naghibi SA, Hashemi H, Berndtsson R (2020) Application of advanced machine learning algorithms to assess groundwater potential using remote sensing-derived data. Remote Sens 12(17):2742

    Article  Google Scholar 

  • Khan ZA, Jhamnani B (2023) Identification of groundwater potential zones of Idukki district using remote sensing and GIS-based machine-learning approach. Water Supply 23(6):2426–2446

    Article  Google Scholar 

  • Kim KH, Kim SS, Kim SJ(2006) Advantage of support vector machine for neural spike train decoding under spike sorting errors.In: 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, IEEE

  • Kowalski BR, Bender C (1972) k-Nearest neighbor classification rule (pattern recognition) applied to nuclear magnetic resonance spectral interpretation. Anal Chem 44(8):1405–1411

    Article  CAS  Google Scholar 

  • Le Duy N, Nguyen TVK, Nguyen DV, Tran AT, Nguyen HT, Heidbüchel I, Merz B, Apel H (2021) Groundwater dynamics in the Vietnamese Mekong Delta: trends, memory effects, and response times. J Hydrol Reg Stud 33:100746

    Article  Google Scholar 

  • Lu C, Zhang S, Xue D, Xiao F, Liu C (2022) Improved estimation of coalbed methane content using the revised estimate of depth and CatBoost algorithm: a case study from southern Sichuan Basin, China. Comput Geosci 158:104973

    Article  CAS  Google Scholar 

  • Machiwal D, Jha MK, Mal BC (2011) Assessment of groundwater potential in a semi-arid region of India using remote sensing, GIS and MCDM techniques. Water Resour Manag 25:1359–1386

    Article  Google Scholar 

  • Mallick J, Khan RA, Ahmed M, Alqadhi SD, Alsubih M, Falqi I, Hasan MA (2019) Modeling groundwater potential zone in a semi-arid region of Aseer using fuzzy-AHP and geoinformation techniques. Water 11(12):2656

    Article  Google Scholar 

  • Martínez-Santos P, Renard P (2020) Mapping groundwater potential through an ensemble of big data methods. Groundwater 58(4):583–597

    Article  Google Scholar 

  • Minderhoud P, Middelkoop H, Erkens G, Stouthamer E (2020) Groundwater extraction may drown mega-delta: projections of extraction-induced subsidence and elevation of the Mekong Delta for the 21st century. Environ Res Commun 2(1):011005

    Article  Google Scholar 

  • Moghaddam DD, Rahmati O, Panahi M, Tiefenbacher J, Darabi H, Haghizadeh A, Haghighi AT, Nalivan OA, Bui DT (2020) The effect of sample size on different machine learning models for groundwater potential mapping in mountain bedrock aquifers. CATENA 187:104421

    Article  Google Scholar 

  • Mosavi A, Sajedi Hosseini F, Choubin B, Goodarzi M, Dineva AA, Rafiei Sardooi E (2021) Ensemble boosting and bagging based machine learning models for groundwater potential prediction. Water Resour Manag 35:23–37

    Article  Google Scholar 

  • Naghibi SA, Ahmadi K, Daneshi A (2017) Application of support vector machine, random forest, and genetic algorithm optimized random forest models in groundwater potential mapping. Water Resour Manag 31:2761–2775

    Article  Google Scholar 

  • Naghibi SA, Pourghasemi HR (2015) A comparative assessment between three machine learning models and their performance comparison by bivariate and multivariate statistical methods in groundwater potential mapping. Water Resour Manag 29:5217–5236

    Article  Google Scholar 

  • Naghibi SA, Pourghasemi HR, Dixon B (2016) GIS-based groundwater potential mapping using boosted regression tree, classification and regression tree, and random forest machine learning models in Iran. Environ Monit Assess 188:1–27

    Article  Google Scholar 

  • Nguyen PT, Ha DH, Avand M, Jaafari A, Nguyen HD, Al-Ansari N, Van Phong T, Sharma R, Kumar R, Le HV (2020) Soft computing ensemble models based on logistic regression for groundwater potential mapping. Appl Sci 10(7):2469

    Article  CAS  Google Scholar 

  • Pal M (2005) Random forest classifier for remote sensing classification. Int J Remote Sens 26(1):217–222

    Article  Google Scholar 

  • Popa CL, Bretcan P, Radulescu C, Carstea EM, Tanislav D, Dontu SI, Dulama ID (2019) Spatial distribution of groundwater quality in connection with the surrounding land use and anthropogenic activity in rural areas. Acta Montanistica Slovaca 24(2):73

    CAS  Google Scholar 

  • Pourghasemi HR, Sadhasivam N, Yousefi S, Tavangar S, Nazarlou HG, Santosh M (2020) Using machine learning algorithms to map the groundwater recharge potential zones. J Env Manag 265:110525

    Article  Google Scholar 

  • Prasad P, Loveson VJ, Kotha M, Yadav R (2020) Application of machine learning techniques in groundwater potential mapping along the west coast of India. Gisci Remote Sens 57(6):735–752

    Article  Google Scholar 

  • Prokhorenkova L, Gusev G, Vorobev A, Dorogush AV, Gulin A (2018) CatBoost: unbiased boosting with categorical features. In: Advances in neural information processing systems 31

  • Razandi Y, Pourghasemi HR, Neisani NS, Rahmati O (2015) Application of analytical hierarchy process, frequency ratio, and certainty factor models for groundwater potential mapping using GIS. Earth Sci Inf 8:867–883

    Article  Google Scholar 

  • Razavi-Termeh SV, Sadeghi-Niaraki A, Choi S-M (2019) Groundwater potential mapping using an integrated ensemble of three bivariate statistical models with random forest and logistic model tree models. Water 11(8):1596

    Article  Google Scholar 

  • Sachdeva S, Kumar B (2021) Comparison of gradient boosted decision trees and random forest for groundwater potential mapping in Dholpur (Rajasthan), India. Stoch Env Res Risk Assess 35:287–306

    Article  Google Scholar 

  • Sahoo S, Russo T, Elliott J, Foster I (2017) Machine learning algorithms for modeling groundwater level changes in agricultural regions of the US. Water Resour Res 53(5):3878–3895

    Article  Google Scholar 

  • Sahour H, Gholami V, Vazifedan M (2020) A comparative analysis of statistical and machine learning techniques for mapping the spatial distribution of groundwater salinity in a coastal aquifer. J Hydrol 591:125321

    Article  Google Scholar 

  • Sarkar SK, Talukdar S, Rahman A, Roy SK (2022) Groundwater potentiality mapping using ensemble machine learning algorithms for sustainable groundwater management. Front Eng Built Environ 2(1):43–54

    Article  Google Scholar 

  • Shahabi H, Shirzadi A, Ghaderi K, Omidvar E, Al-Ansari N, Clague JJ, Geertsema M, Khosravi K, Amini A, Bahrami S (2020) Flood detection and susceptibility mapping using sentinel-1 remote sensing data and a machine learning approach: hybrid intelligence of bagging ensemble based on k-nearest neighbor classifier. Remote Sens 12(2):266

    Article  Google Scholar 

  • Siebert S, Burke J, Faures J-M, Frenken K, Hoogeveen J, Döll P, Portmann FT (2010) Groundwater use for irrigation—a global inventory. Hydrol Earth Syst Sci 14(10):1863–1880

    Article  Google Scholar 

  • Subba Rao N (2006) Groundwater potential index in a crystalline terrain using remote sensing data. Environ Geol 50:1067–1076

    Article  Google Scholar 

  • Sun J, Jia M-Y, Li H (2011) AdaBoost ensemble for financial distress prediction: an empirical comparison with data from Chinese listed companies. Expert Syst Appl 38(8):9305–9312

    Article  Google Scholar 

  • Tahmassebipoor N, Rahmati O, Noormohamadi F, Lee S (2016) Spatial analysis of groundwater potential using weights-of-evidence and evidential belief function models and remote sensing. Arab J Geosci 9:1–18

    Article  Google Scholar 

  • Thanh NN, Thunyawatcharakul P, Ngu NH, Chotpantarat S (2022a) Global review of groundwater potential models in the last decade: parameters, model techniques, and validation. J Hydrol 614:128501

    Article  Google Scholar 

  • Thanh NN, Thunyawatcharakul P, Ngu NH, Chotpantarat S (2022b) Global review of groundwater potential models in the last decade: Parameters, model techniques, and validation. J Hydrol 614:128501

    Article  Google Scholar 

  • Tien Bui D, Khosravi K, Li S, Shahabi H, Panahi M, Singh V, Chapi K, Shirzadi A, Panahi S, Chen W (2018) New hybrids of anfis with several optimization algorithms for flood susceptibility modeling. Water 10(9):1210

    Article  Google Scholar 

  • Tran DA, Tsujimura M, Ha NT, Van Binh D, Dang TD, Doan Q-V, Bui DT, Ngoc TA, Thuc PTB, Pham TD (2021a) Evaluating the predictive power of different machine learning algorithms for groundwater salinity prediction of multi-layer coastal aquifers in the Mekong Delta, Vietnam. Ecol Ind 127:107790

    Article  CAS  Google Scholar 

  • Tran DA, Tsujimura M, Loc HH, Dang DH, Le Vo P, Ha DT, Trang NTT, Thuc PTB, Dang TD, Batdelger O (2021b) Groundwater quality evaluation and health risk assessment in coastal lowland areas of the Mekong Delta, Vietnam. Groundw Sustain Dev 15:100679

    Article  Google Scholar 

  • Vapnik VN (1999) An overview of statistical learning theory. IEEE Trans Neural Networks 10(5):988–999

    Article  CAS  Google Scholar 

  • Wagner F, Tran VB, Renaud FG (2012) Groundwater resources in the Mekong Delta: availability, utilization and risks. The Mekong Delta System: Interdisciplinary analyses of a river delta. Springer, Dordrecht, pp 201–220

    Chapter  Google Scholar 

  • Yariyan P, Avand M, Omidvar E, Pham QB, Linh NTT, Tiefenbacher JP (2022) Optimization of statistical and machine learning hybrid models for groundwater potential mapping. Geocarto Int 37(13):3877–3911

    Article  Google Scholar 

  • Yen HPH, Pham BT, Van Phong T, Ha DH, Costache R, Van Le H, Nguyen HD, Amiri M, Van Tao N, Prakash I (2021) Locally weighted learning based hybrid intelligence models for groundwater potential mapping and modeling: a case study at Gia Lai province, Vietnam. Geosci Front 12(5):101154

    Article  Google Scholar 

  • Zhang C, Chen X, Wang S, Hu J, Wang C, Liu X (2021) Using CatBoost algorithm to identify middle-aged and elderly depression, national health and nutrition examination survey 2011–2018. Psychiatry Res 306:114261

    Article  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Huu Duy Nguyen, Dinh Kha Dang, Van Hong Nguyen, Quoc-Huy Nguyen, Quang-Thanh Bui. The first draft of the manuscript was written by Huu Duy Nguyen, Quoc-Huy Nguyen, Quang-Thanh Bui, Tien Giang Nguyen, Alexandru-Ionut Petrisor; Petre Bretcan, Gheorghe Șerban. Huu Duy Nguyen and Quang Hai Truong also made an overall revision of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Huu Duy Nguyen.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Edited by Dr. Khabat Khosravi (ASSOCIATE EDITOR) / Prof. Jochen Aberle (CO-EDITOR-IN-CHIEF).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, H.D., Nguyen, QH., Dang, D.K. et al. Integrated machine learning and remote sensing for groundwater potential mapping in the Mekong Delta in Vietnam. Acta Geophys. (2024). https://doi.org/10.1007/s11600-024-01331-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11600-024-01331-5

Keywords

Navigation