Skip to main content

Advertisement

Log in

GPS velocities and uniform slip rates across Siulak and Dikit segments: implication to segmentation and seismic moment deficits along Sumatran fault system

  • Research Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The Siulak and Dikit segments of the Sumatran fault system, where historical major earthquakes of Ms 7.6 in 1909, Mw 7.2 in 1995 and Mw 6.6 in 2009 occurred, are distinctive and tectonically active, yet tectonic investigation such trench-parallel motions of both segments still is challenging to be better understand and important to constrain seismic hazard. We aim to better estimate slip rates as well as locking depths using GPS velocities and determine the cumulative energy stored at the segments. We processed raw GPS data from 31 GPS stations originating from the Indonesian continuous operating reference system (Ina-CORS), the Sumatran GPS array (SuGAr), and IGS networks for 2016–2021 including UNIB stations including two UNIB stations using GAMIT/GLOBK software. The daily GPS solutions were constrained into the ITRF-2014 frame, and the GPS velocities were translated into the Sunda Block. We modeled trench-parallel GPS velocities using 1-D screw dislocation elastic model following a Bayesian approach with Metropolis MCMC sampler to estimate optimum fault parameters. Our result inferred that estimated slip rates are 20.71 [− 2.20, + 2.95] mm/yr with a locking depth of 21.62 [− 11.98, + 14.16] km in the Siulak segment and 20.21 [− 2.42, + 2.95] mm/yr with a locking depth of 21.72 [− 13.10, + 14.77] km in the Dikit segment. Our analysis demonstrates both segments having a uniform slip rate, suggesting that the segments may share similar tectonic settings. In addition, the two segments are capable of generating a magnitude six to seven or greater earthquake if a single earthquake occurs in 50 to 200 years periods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4 
Fig. 5.
Fig. 6 

Similar content being viewed by others

References

  • Alif SM, Fattah EI, Kholil M (2020) Geodetic slip rate and locking depth of east Semangko Fault derived from GPS measurement. Geod Geodyn 11(3):222–228

    Article  Google Scholar 

  • Altamimi Z, Métivier L, Collilieux X (2012) ITRF2008 plate motion model. J Geophys Res Solid Earth 117:543. https://doi.org/10.1029/2011JB008930

    Article  Google Scholar 

  • Altamimi Z, Rebischung P, Métivier L, Collilieux X (2016) ITRF2014: a new release of the international terrestrial reference frame modeling nonlinear station motions. J Geophys Res Solid Earth 121(8):6109–6131

    Article  Google Scholar 

  • Aoyagi Y, Kimura H, Mizoguchi K (2020) Seismic velocity structure at the southern termination of the 2016 Kumamoto Earthquake rupture. Earth Planets Space 72:1–14

    Article  Google Scholar 

  • Aslan G, Lasserre C, Cakir Z, Ergintav S, Özarpaci S, Dogan U, Bilham R, Renard F (2019) Shallow creep along the 1999 Izmit Earthquake rupture (Turkey) from GPS and high temporal resolution interferometric synthetic aperture radar data (2011–2017). J Geophys Res Solid Earth 124(2):2218–2236

    Article  Google Scholar 

  • Bellier O, Sébrier M (1995) Is the slip rate variation on the Great Sumatran Fault accommodated by fore-arc stretching? Geophys Res Lett 22(15):1969–1972

    Article  Google Scholar 

  • Bellier O, Sébrier M, Pramumijoyo S, Beaudouin T, Harjono H, Bahar I, Forni O (1997) Paleoseismicity and seismic hazard along the Great Sumatran fault (Indonesia). J Geodyn 24(1–4):169–183

    Article  Google Scholar 

  • Bock Y, Prawirodirdjo L, Genrich JF, Stevens CW, McCaffrey R, Subarya C, Puntodewo SSO, Calais E (2003) Crustal motion in Indonesia from global positioning system measurements. J Geophys Res Solid Earth. https://doi.org/10.1029/2001JB000324

    Article  Google Scholar 

  • Bradley KE, Feng L, Hill EM, Natawidjaja DH, Sieh K (2017) Implications of the diffuse deformation of the Indian Ocean lithosphere for slip partitioning of oblique plate convergence in Sumatran. J Geophys Res Solid Earth 122(1):572–591

    Article  Google Scholar 

  • Burton PW, Hall TR (2014) Segmentation of the Sumatran fault. Geophys Res Lett 41(12):4149–4158

    Article  Google Scholar 

  • Chéry J, Vernant P (2006) Lithospheric elasticity promotes episodic fault activity. Earth Planet Sci Lett 243(1–2):211–217

    Article  Google Scholar 

  • Chevalier ML, Ryerson F, Tapponnier P, Finkel R, van der Woerd J, Li HB, Qing L (2005) Slip-rate measurements on the Karakorum fault may imply secular variations in fault motion. Science 307(5708):411–414

    Article  CAS  Google Scholar 

  • Crow MJ, Barber AJ (2005) Map: structural map of Sumatra. Geol Soc London Memoirs. https://doi.org/10.1144/GSL.MEM.2005.031.01.18

    Article  Google Scholar 

  • Deif A, El-Hussain I (2012) Seismic moment rate and earthquake mean recurrence interval in the major tectonic boundaries around oman. J Geophys Eng 9(6):773–783

    Article  Google Scholar 

  • Diambama AD, Anggraini A, Nukman M, Lühr BG, Suryanto W (2019) Velocity structure of the earthquake zone of the M6. 3 Yogyakarta earthquake 2006 from a seismic tomography study. Geophys J Int 216(1):439–452

    Article  Google Scholar 

  • Duan B, Oglesby DD (2006) Heterogeneous fault stresses from previous earthquakes and the effect on dynamics of parallel strike‐slip faults. J Geophys Res Solid Earth. https://doi.org/10.1029/2005JB004138

    Article  Google Scholar 

  • Fitch TJ (1972) Plate Convergence, transcurrent faults, and internal deformation adjacent to Southeast Asia and the Western Pacific. J Geophys Res 77(23):4432–4460

    Article  Google Scholar 

  • Foreman-Mackey D, Hogg DW, Lang D, Goodman J (2013) EMCEE: the MCMC hammer. Publ Astron Soc Pac 125(925):306–312

    Article  Google Scholar 

  • Frankel KL, Dolan JF, Finkel RC, Owen LA, Hoeft JS (2007) Spatial variations in slip rate along the Death Valley-Fish Lake Valley fault system determined from LiDAR topographic data and cosmogenic 10Be geochronology. Geophys Res Lett 34:L18303

    Article  Google Scholar 

  • Friedrich AM, Wernicke BP, Niemi NA, Bennett RA, Davis JL (2003) Comparison of geodetic and geologic data from the Wasatch region, Utah, and implications for the spectral character of Earth deformation at periods of 10 to 10 million years. J Geophys Res 108(B4):2199

    Google Scholar 

  • Genrich JF, Bock Y, McCaffrey R, Prawirodirdjo L, Stevens CW, Puntodewo SSO, Subarya C, Wdowinski S (2000) Distribution of slip at the northern Sumatran fault system. J Geophys Res Solid Earth 105(B12):28327–28341

    Article  Google Scholar 

  • Gold RD, Cowgill E, Arrowsmith JR, Friedrich AM (2017) Pulsed strain release on the Altyn Tagh fault, northwest China. Earth Planet Sci Lett 459:291–300

    Article  CAS  Google Scholar 

  • Goodman J, Weare J (2010) Ensemble samplers with affine invariance. Comm App Math Comp Sci 5(1):65–80

    Article  Google Scholar 

  • Hanks TC, Kanamori H (1979) A moment magnitude scale. J Geophys Res B Solid Earth 84(B5):2348–2350

    Article  Google Scholar 

  • Herring TA, King RW, Floyd MA, McClusky SC (2015) Introduction to GAMIT/GLOBK, Release 10.6, Massachusetts Institute of Technology, Cambridge

  • Hurukawa N, Wulandari BR, Kasahara K (2014) Earthquake history of the Sumatran fault, Indonesia, since 1892, derived from relocation of large earthquakes. Bull Seismol Soc Am 104(4):1750–1762

    Article  Google Scholar 

  • Ito T, Gunawan E, Kimata F, Tabei T, Simons M, Meilano I, Agustan YO, Nurdin I, Sugiyanto D (2012) Isolating along‐strike variations in the depth extent of shallow creep and fault locking on the northern Great Sumatran Fault. J Geophys Res Solid Earth. https://doi.org/10.1029/2011JB008940

    Article  Google Scholar 

  • Kasmolan M, Santosa BJ, Lees JM, Utama W (2010) Earthquake source parameters at the Sumatran fault zone: identification of the activated fault plane. Cent Eur J Geosci 2(4):455–474

    Google Scholar 

  • Kirby E, Harkins N, Wang EQ, Shi XH, Fan C, Burbank D (2007) Slip rate gradients along the eastern Kunlun fault. Tectonics 26(TC2010):1–16

    Google Scholar 

  • Klinger Y (2010) Relation between continental strike-slip earthquake segmentation and thickness of the crust. J Geophys Res Solid Earth. https://doi.org/10.1029/2009JB006550

    Article  Google Scholar 

  • Letellier T, Lyard F, Lefévre F (2004) The new global tidal solution: FES2004. Ocean Surface Topography Science Team Meeting, Saint Petersburg, FL

  • Lin A, Satsukawa T, Wang M, Mohammadi Asl Z, Fueta R, Nakajima F (2016) Coseismic rupturing stopped by Aso volcano during the 2016 M w 7.1 Kumamoto earthquake Japan. Science 354(6314):869–874

    Article  CAS  Google Scholar 

  • Lubis AM, Hashima A, Sato T (2013) Analysis of afterslip distribution following the 2007 September 12 southern Sumatra earthquake using poroelastic and viscoelastic media. Geophys J Int 192(1):18–37

    Article  Google Scholar 

  • Matsumoto N, Hiramatsu Y, Sawada A (2016) Continuity, segmentation and faulting type of active fault zones of the 2016 Kumamoto earthquake inferred from analyses of a gravity gradient tensor. Earth Planets Space 68:167

    Article  Google Scholar 

  • McCaffrey R (1992) Oblique plate convergence, slip vectors, and forearc deformation. J Geophys Res 97:8905–8915

    Article  Google Scholar 

  • McCaffrey R (1996) Estimates of modern arc-parallel strain rates in fore arcs. Geology 24:27–30

    Article  Google Scholar 

  • McCaffrey R (2009) The tectonic framework of the Sumatran subduction zone. Annu Rev Earth Planet Sci 37:345–366

    Article  CAS  Google Scholar 

  • Miyakawa A, Sumita T, Okubo Y, Okuwaki R, Otsubo M, Uesawa S, Yagi Y (2016) Volcanic magma reservoir imaged as a low-density body beneath Aso volcano that terminated the 2016 Kumamoto earthquake rupture. Earth Planets Space 68:1–9

    Article  Google Scholar 

  • Molnar P, Tapponnier P (1978) Active tectonics of Tibet. J Geophys Res Solid Earth 83(B11):5361–5375

    Article  Google Scholar 

  • Natawidjaja DH (2017) Updating active fault maps and sliprates along the Sumatran Fault Zone, Indonesia. IOP Conf Ser Earth Environ Sci 118(1):0012001

    Google Scholar 

  • Natawidjaja DH (2018) Major Bifurcations, Slip rates, and A Creeping Segment of Sumatran Fault Zone in Tarutung-Sarulla-Sipirok-Padangsidempuan, Central Sumatran, Indonesia. Indones J Geosci 5(2):137–160

    Article  Google Scholar 

  • Pizzi A, Galadini F (2009) Pre-existing cross-structures and active fault segmentation in the northern-central Apennines (Italy). Tectonophysics 476:304–319

    Article  Google Scholar 

  • Prawirodirdjo L, Bock Y, McCaffrey R, Genrich J, Calais E, Stevens C, Puntodewo SSO, Subarya C, Rais J, Zwick P, Fauzi RM (1997) Geodetic observations of interseismic strain segmentation at the Sumatra Subduction Zone. Geophys Res Lett 24:2601–2604

    Article  Google Scholar 

  • Prawirodirdjo L, McCaffrey R, Chadwell CD, Bock Y, Subarya C (2010) Geodetic observations of an earthquake cycle at the Sumatra subduction zone: role of interseismic strain segmentation. J Geophys Res Solid Earth 115(B3):5454. https://doi.org/10.1029/2008JB006139

    Article  Google Scholar 

  • Rafie MT, Sahara DP, Cummins PR, Triyoso W, Widiyantoro S (2023) Stress accumulation and earthquake activity on the Great Sumatran Fault, Indonesia. Nat Hazards 116:3401–3425. https://doi.org/10.1007/s11069-023-05816-2

    Article  Google Scholar 

  • Rittase WM, Kirby E, McDonald E, Walker JD, Gosse J, Spencer JQG, Herrs AJ (2014) Temporal variations in Holocene slip rate along the central Garlock fault, Pilot Knob Valley, California. Lithosphere 6(1):48–58

    Article  Google Scholar 

  • Salman R, Lindsey EO, Feng L, Bradley K, Wei S, Wang T, Daryono MR, Hill E (2020) Structural controls on rupture extent of recent Sumatran fault zone earthquakes, Indonesia. J Geophys Res Solid Earth 125(2):1–19

    Article  Google Scholar 

  • Savage JC, Burford RO (1973) Geodetic determination of relative plate motion in central California. J Geophys Res Solid Earth 78:832–845

    Article  Google Scholar 

  • Sieh K, Natawidjaja DH (2000) Neotectonics of the Sumatran fault, Indonesia. J Geophys Res 105:28295–28326

    Article  Google Scholar 

  • Simons WJ, Socquet A, Vigny C, Ambrosius BA, Haji Abu S, Promthong C, Subarya C, Sarsito DA, Matheussen S, Morgan P, Spakman W (2007) A decade of GPS in Southeast Asia: resolving Sundaland motion and boundaries. J Geophys Res Solid Earth. https://doi.org/10.1029/2005JB003868

    Article  Google Scholar 

  • Tesson J, Benedetti L, Godard V, Novaes C, Fleury J (2021) Slip rate determined from cosmogenic nuclides on normal-fault facets. Geology 49(1):66–70

    Article  CAS  Google Scholar 

  • Tsuji T, Yamamoto K, Matsuoka T, Yamada Y, Onishi K (2009) Earthquake fault of the 26 May 2006 Yogyakarta earthquake. Earth Planets Space 61:e29–e32

    Article  Google Scholar 

  • Wang H, Ran Y, Chen L, Li Y (2017) Paleoearthquakes on the Anninghe and Zemuhe fault along the southeastern margin of the Tibetan Plateau and implications for fault rupture behavior at fault bends on strike-slip faults. Tectonophysics 721:167–178

    Article  Google Scholar 

  • Wang X, Liu X, Zhao D, Liu B, Qiao Q, Zhao L, Wang X (2022) Oceanic plate subduction and continental extrusion in Sumatran: insight from S-wave anisotropic tomography. Earth Planet Sci Lett 580:117388

    Article  CAS  Google Scholar 

  • Watson AR, Elliott JR, Walters RJ (2022) Interseismic strain accumulation across the main recent fault, SW Iran, from Sentinel‐1 InSAR observations. J Geophys Res Solid Earth 127(2):e2021JB022674. https://doi.org/10.1029/2021JB022674

    Article  Google Scholar 

  • Weller O, Lange D, Tilmann F, Natawidjaja DH, Rietbrock A, Collings R, Gregory L (2012) The structure of the Sumatran Fault revealed by local seismicity. Geophys Res Lett 39:L01306

    Article  Google Scholar 

  • Wessel P, Luis JF, Uieda L, Scharroo R, Wobbe F, Smith WHF, Tian D (2019) The generic mapping tools version 6. Geochem Geophys Geosyst 20:5556–5564

    Article  Google Scholar 

  • Wulandari R, Yudistira Y, Fattah EI, Aulia AN, Wibowo A (2021) 3D Seismic waves velocity structure of West Sumatera seismic waves using earthquake data from January 2010-December 2017. IOP Conf Series Earth Environ Sci 873:012003

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to thank the Geospatial Information Agency (BIG), Scripts Orbit and Permanent Array Center (SOPAC), and Earth Observatory Singapore (EOS) for collecting GPS data (ftp://ftp.earthobservatory.sg/SugarData). The BNTL and IPUH stations were established through Demand Driven Research Grant (DDRG), COREMAP-CTI, No.B-1191/IPK.2/KS.02/III/2018, and GPS receivers from USAID-PEER project with agreement No. 2000006274. We thank Rio Sahputra for helping with GPS data acquisition from BNTL and IPUH stations. The author also thanks Geohazards and Climate Change Laboratory at University of Bengkulu for providing a computer with GAMIT/GLOBK software from Herring et al. (2015) and Generic Mapping Tool software Wessel et al. (2019). This work was supported by the National Research and Innovation Agency (BRIN), Indonesia, with Grant No. 124.01.1.690501/2022 and 373/II/FR/3/2022. In addition, A.M.L and A.T were supported by the Research Mobility Program from Human Resources of Science and Technology BRIN.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization was contributed to [Ashar Muda Lubis, Lina Handayani, Muhammad Maruf Mukti]; methodology was contributed to [Ashar Muda Lubis, Indah Dwi Natasya]; formal analysis and investigation were contributed to [Ashar Muda Lubis, Agnis Triahadini, Muhammad Maruf Mukti]; writing—original draft preparation, was contributed to [Ashar Muda Lubis, Lina Handayani, Indah Dwi Natasya, Agnis Triahadini]; writing—review and editing, was contributed to [Ashar Muda Lubis, Agnis Triahadini, Muhammad Maruf Mukti]; funding acquisition was contributed to [Lina Handayani]; resources was contributed to [Muhammad Maruf Mukti, Lina Handayani, Indah Dwi Natasya]; supervision was contributed to [Lina Handayani, Ashar Muda Lubis].

Corresponding author

Correspondence to Ashar Muda Lubis.

Ethics declarations

Conflict of interest

All co-authors have seen, checked and agree with the contents of the manuscript. The authors declare no conflicts of interest and no financial interest to report.

Additional information

Edited by Dr. Raphael De Plaen (ASSOCIATE EDITOR) / Prof. Ramón Zúñiga (CO-EDITOR-IN-CHIEF).

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 20 kb)

Supplementary file2 (PDF 490 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lubis, A.M., Natasya, I.D., Handayani, L. et al. GPS velocities and uniform slip rates across Siulak and Dikit segments: implication to segmentation and seismic moment deficits along Sumatran fault system. Acta Geophys. (2024). https://doi.org/10.1007/s11600-024-01326-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11600-024-01326-2

Keywords

Navigation