Skip to main content
Log in

Seismic signal de-noising using time–frequency peak filtering based on empirical wavelet transform

  • Research Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

Seismic noise suppression plays an important role in seismic data processing and interpretation. The time–frequency peak filtering (TFPF) is a classical method for seismic noise attenuation defined in the time–frequency domain. Nevertheless, we obtain serious attenuation for the seismic signal amplitude when choosing a wide window of TFPF. It is an unsolved issue for TFPF to select a suitable window width for attenuating seismic noise effectively and preserving valid signal amplitude effectively. To overcome the disadvantage of TFPF, we introduce the empirical wavelet transform (EWT) to improve the filtered results produced by TFPF. We name the proposed seismic de-noising workflow as the TFPF based on EWT (TFPF-EWT). We first introduce EWT to decompose a non-stationary seismic trace into a couple of intrinsic mode functions (IMFs) with different dominant frequencies. Then, we apply TFPF to the chosen IMFs for noise attenuation, which are selected by using a defined reference formula. At last, we add the filtered IMFs and the unprocessed ones to obtain the filtered seismic signal. Synthetic data and 3D field data examples prove the validity and effectiveness of the TFPF-EWT for both attenuating random noise and preserving valid seismic amplitude.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Arnold M, Roessgen M, Boashash B (1994) Filtering real signals through frequency modulation and peak detection in the time-frequency plane. IEEE ICASSP 94:345–348

    Google Scholar 

  • Bekara M, van der Baan M (2009) Random and coherent noise attenuation by empirical mode decomposition. Geophysics 74:V89–V98

    Article  Google Scholar 

  • Boashash B (2015) Time-frequency signal analysis and processing, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Boashash B, Mesbah M (2004) Signal enhancement by time-frequency peak filtering. IEEE Trans Signal Process 52:929–937

    Article  Google Scholar 

  • Boashash B, O'shea PJ (1994) Polynomial Wigner-Ville distributions and their relationship to time-varying higher order spectra. IEEE Trans Signal Process 42:216–220

    Article  Google Scholar 

  • Canales L (1984) Random noise reduction. In: 54th annal international meeting SEG, pp 525–527

  • Chen Y, Ma J (2014) Random noise attenuation by fx empirical-mode decomposition predictive filtering. Geophysics 79:V81–V91

    Article  Google Scholar 

  • Chen Y, Zhang G, Gan S, Zhang C (2015) Enhancing seismic reflections using empirical mode decomposition in the flattened domain. J Appl Geophys 119:99–105

    Article  Google Scholar 

  • Colominas MA, Schlotthauer G, Torres ME (2014) Improved complete ensemble EMD: a suitable tool for biomedical signal processing. Biomed Signal Process Control 14:19–29

    Article  Google Scholar 

  • Donoho DL, Johnstone IM (1994) Ideal spatial adaptation by wavelet shrinkage. Biometrika 81:425–455

    Article  Google Scholar 

  • Fedi M, Lenarduzzi L, Primiceri R, Quarta T (2000) Localized denoising filtering Using the wavelet transform. Pure Appl Geophys 157:1463–1491

    Article  Google Scholar 

  • Gao J, Mao J, Chen W, Zheng Q (2006) On the denoising method of prestack seismic data in wavelet domain. Chin J Geophys CH 49:1155–1163

    Article  Google Scholar 

  • Gemechu D, Yuan H, Ma J (2017) Random noise attenuation using an improved anisotropic total variation regularization. J Appl Geophys 144:173–187

    Article  Google Scholar 

  • Gilles J (2013) Empirical wavelet transform. IEEE Trans Signal Process 61:3999–4010

    Article  Google Scholar 

  • Han J, van der Baan M (2013) Empirical mode decomposition for seismic time-frequency analysis. Geophysics 78:O9–O19

    Article  Google Scholar 

  • Harris PE, White RE (1997) Improving the performance of fx prediction filtering at low signal-to-noise ratios. Geophys Prospect 45:269–302

    Article  Google Scholar 

  • Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond Ser A 454:903–995

    Article  Google Scholar 

  • Li Z, Gao J (2016) Random noise attenuation by an amplitude-preserved time-frequency peak-based on empirical wavelet transform predictive filtering. In: 86th annual international meeting SEG, pp 16–21

  • Li F, Zhang B, Verma S, Marfurt KJ (2018) Seismic signal denoising using thresholded variational mode decomposition. Explor Geophys 49:450–461

    Article  Google Scholar 

  • Lin H, Li Y, Yang B (2007) Recovery of seismic events by time-frequency peak filtering. IEEE Int Conf Image Process 5:V441–V444

    Google Scholar 

  • Lin H, Li Y, Yang B, Ma H (2013) Random denoising and signal nonlinearity approach by time-frequency peak filtering using weighted frequency reassignment. Geophysics 78:V229–V237

    Article  Google Scholar 

  • Lin H, Li Y, Yang B, Ma H, Zhang C (2014) Seismic random noise elimination by adaptive time-frequency peak filtering. IEEE Geosci Remote Sens Lett 11:337–341

    Article  Google Scholar 

  • Lin H, Li Y, Ma H, Yang B, Dai J (2015) Matching-pursuit-based spatial-trace time-frequency peak filtering for seismic random noise attenuation. IEEE Geosci Remote Sens Lett 12:394–398

    Article  Google Scholar 

  • Lin H, Li Y, Ma H, Xu L (2016) Simultaneous seismic random noise attenuation and signal preservation by optimal spatiotemporal TFPF. J Appl Geophys 128:123–130

    Article  Google Scholar 

  • Liu Y, Li Y, Lin H, Ma H (2014) An amplitude-preserved time–frequency peak filtering based on empirical mode decomposition for seismic random noise reduction. IEEE Geosci Remote Sens Lett 11:896–900

    Article  Google Scholar 

  • Liu N, Gao J, Zhang Z, Jiang X, Lv Q (2016a) High resolution characterization of geological structures using synchrosqueezing transform. Interpretation 5:T75–T85

    Article  Google Scholar 

  • Liu W, Cao S, Chen Y (2016b) Seismic time–frequency analysis via empirical wavelet transform. IEEE Geosci Remote Sens Lett 13:28–32

    Article  Google Scholar 

  • Liu Y, Dang B, Li Y, Lin H, Ma H (2016c) Applications of Savitzky–Golay filter for seismic random noise reduction. Acta Geophys 64:101–124

    Article  Google Scholar 

  • Liu W, Cao S, Wang Z (2017) Application of variational mode decomposition to seismic random noise reduction. J Geophys Eng 14:888–899

    Article  Google Scholar 

  • Liu N, Gao J, Jiang X, Zhang Z, Wang P (2018a) Seismic instantaneous frequency extraction based on the SST-MAW. J Geophys Eng 15:995–1007

    Article  Google Scholar 

  • Liu N, Gao J, Zhang B, Li F, Wang Q (2018b) Time-frequency analysis of seismic data using a three parameters S transform. IEEE Geosci Remote Sens Lett 15:142–146

    Article  Google Scholar 

  • Liu N, Gao J, Zhang B, Wang Q, Jiang X (2019) Self-adaptive generalized s-transform and its application in seismic time-frequency analysis. IEEE Trans Geosci Remote Sens 57:7849–7859

    Article  Google Scholar 

  • Naghizadeh M (2012) Seismic data interpolation and denoising in the frequency-wavenumber domain. Geophysics 77:V71–V80

    Article  Google Scholar 

  • Roessgen M, Boashash B (1994) Time–frequency peak filtering applied to FSK signals. In: IEEE-SP international symposium on time-frequency and time-scale analysis, vol 17, pp 516–519

  • Shan H, Ma J, Yang H (2009) Comparisons of wavelets, contourlets and curvelets in seismic denoising. Journal of Applied Geophysics 69:103–115

    Article  Google Scholar 

  • Ville J (1948) Théorie et applications de la notion de signal analytique. Cables et transmission 2:61–74

    Google Scholar 

  • Wang Y (1999) Random noise attenuation using forward-backward linear prediction. J Seism Explor 8:133–142

    Google Scholar 

  • Wang D, Gao J (2014) A new method for random noise attenuation in seismic data based on anisotropic fractional-gradient operators. J Appl Geophys 110:135–143

    Article  Google Scholar 

  • Wigner E (1932) On the quantum correction for thermodynamic equilibrium. Phys Rev 40:749–759

    Article  Google Scholar 

  • Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1–41

    Article  Google Scholar 

  • Wu H, Zhang B, Lin T, Li F, Liu N (2019) White noise attenuation of seismic data by integrating variational mode decomposition and convolutional neural network. Geophysics 84:1–56

    Article  Google Scholar 

  • Yu P, Li Y, Lin H, Wu N (2016) Removal of random noise in seismic data by time-varying window-length time–frequency peak filtering. Acta Geophys 64:1703–1714

    Article  Google Scholar 

  • Yuan S, Wang S (2013) Edge-preserving noise reduction based on Bayesian inversion with directional difference constraints. J Geophys Eng 10:025001

    Article  Google Scholar 

  • Yuan S, Wang S, Li G (2012) Random noise reduction using Bayesian inversion. J Geophys Eng 9:60–68

    Article  Google Scholar 

  • Yuan S, Wang S, Luo C, Wang T (2018) Inversion-based 3-D seismic de-noising for exploring spatial edges and spatio-temporal signal redundancy. IEEE Geosci Remote Sens Lett 15:1682–1686

    Article  Google Scholar 

  • Zahir M, Hussain B (2000) Adaptive instantaneous frequency estimation of multicomponent FM signal using quadratic time–frequency distributions. IEEE Trans Signal Process 50:657–660

    Google Scholar 

  • Zhang B, Lin T, Guo S, Davogustto OE, Marfurt KJ (2016) Noise suppression of time-migrated gathers using prestack structure-oriented filtering. Interpretation 4:SG19–SG29

    Article  Google Scholar 

  • Zhou Q, Gao J, Wang Z, Li K (2016) Adaptive variable time fractional anisotropic diffusion filtering for seismic data noise attenuation. IEEE Trans Geosci Remote Sens 54:1905–1916

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank National Natural Science Foundation of China (41904102), National Postdoctoral Program for Innovative Talents under grant (BX201900279), China Postdoctoral Science Foundation (2019M653584), National Science and Technology Major Project (2016ZX05024-001-007 and 2017ZX05069), and National Key R&D Program of the Ministry of Science and Technology of China (2018YFC0603501) for their financial support. The authors would also like to thank the Research Institute of CNOOC for providing a license for seismic data used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Li.

Appendix: Empirical wavelet transform

Appendix: Empirical wavelet transform

To represent EWT, we first define a non-stationary signal \(s_{n} (t)\) as

$$ s_{n} (t) = \sum\limits_{k = 1}^{K} {c_{k} (t)} + r(t), $$
(8)

where \(c_{k} (t)\) and \(r(t)\) are the IMFs and residual, respectively. Based on Eq. (8), we decompose the non-stationary signal \(s_{n} (t)\) into a set of IMFs \(c_{k} (t),k = 1,2, \ldots ,K\) and a residual \(r(t)\).

EWT builds adaptive wavelets capable for extracting IMFs using the analyzed signal (Gilles 2013). Each of IMFs has a compact support spectrum. EWT aims to separate different portions of the Fourier spectrum, which corresponds to different IMFs. After segmenting the Fourier support \([0,\pi ]\) into \(N\) contiguous segments, we denote \(\omega_{k}\) to be the limits between each segment, where \(\omega_{0} = 0\) and \(\omega_{K} = \pi\). Furthermore, each segment is denoted as \(\Lambda_{k} = [\omega_{k - 1} ,\omega_{k} ]\). Then, EWT is performed in the following steps easily:

  1. (1)

    We first apply the Fourier transform (FT) to \(s(t)\) and obtain the Fourier spectrum. We then assume that there are maxima \(\left\{ {M_{k} } \right\},k = 1,2, \ldots ,K - 1\) of the Fourier spectrum.

  2. (2)

    After obtaining the segments of the Fourier spectrum and the set of the boundaries, the boundaries \(\omega_{k}\) of each segmentation are defined as

    $$ \omega_{k} = \frac{{M_{k} + M_{k + 1} }}{2},\quad k = 1,2, \ldots ,K - 1, $$
    (9)

    where \(\omega_{0} = 0\) and \(\omega_{K} = \pi\).

  3. (3)

    We define the empirical scaling functions \(\phi_{k}\) and empirical wavelets \(\psi_{k}\) in Eqs. (10) and (11):

    $$ \phi_{k} = \left\{ {\begin{array}{*{20}l} {1,} \hfill & {\omega \le (1 - \gamma )\omega_{k} ,} \hfill \\ {\cos \left[ {\frac{\pi }{2}\alpha (\gamma ,\omega_{k} )} \right],} \hfill & {(1 - \gamma )\omega_{k} < |\omega | \le (1 + \gamma )\omega_{k} ,} \hfill \\ {0,} \hfill & {{\text{otherwise}},} \hfill \\ \end{array} } \right. $$
    (10)
    $$ \psi_{k} = \left\{ {\begin{array}{*{20}l} {1,} \hfill & {(1 + \gamma )\omega_{k} \le |\omega | \le (1 - \gamma )\omega_{k + 1} ,} \hfill \\ {\cos \left[ {\frac{\pi }{2}\alpha (\gamma ,\omega_{k + 1} )} \right],} \hfill & {(1 - \gamma )\omega_{k + 1} < |\omega | \le (1 + \gamma )\omega_{k + 1} ,} \hfill \\ {\sin \left[ {\frac{\pi }{2}\alpha (\gamma ,\omega_{k} )} \right],} \hfill & {(1 - \gamma )\omega_{k} < |\omega | \le (1 + \gamma )\omega_{k} ,} \hfill \\ {0,} \hfill & {{\text{otherwise}},} \hfill \\ \end{array} } \right. $$
    (11)

    where \(\alpha (\gamma ,\omega_{k} ) = \beta \left( {\frac{1}{{2\gamma \omega_{k} }}\left[ {|\omega | - (1 - \gamma )\omega_{k} } \right]} \right)\). \(0 < \gamma < 1\) is a parameter for ensuring no overlap between consecutive transition phases and \(\beta (x)\) is a function defined in Eq. (12):

    $$ \beta (x) = \left\{ {\begin{array}{*{20}c} {0,} & {x \le 0,} \\ {1,} & {x \ge 1,} \\ \end{array} } \right.\quad {\text{and}}\quad \beta (x) + \beta (1 - x) = 1,\quad \forall x \in [0,1]. $$
    (12)
  4. (4)

    We calculate EWT \(W_{s}^{\varepsilon } (i,t)\) by the inner product of \(s(t)\) with the empirical wavelets \(\psi_{k}\) as

    $$ W_{s}^{\varepsilon } (n,t) = < s,\psi_{k} > = \int {s(\tau )\overline{\psi }_{k} (\tau - t)d\tau } . $$
    (13)

    In addition, we calculate the approximation coefficients \(W_{s}^{\varepsilon } (0,t)\) as

    $$ W_{s}^{\varepsilon } (0,t) = < s,\phi_{1} > = \int {s(\tau )\overline{\phi }_{1} (\tau - t)d\tau } , $$
    (14)

    where \(\phi_{1}\) and \(\psi_{k}\) are defined in Eqs. (10) and (11).

  5. (5)

    At last, we calculate IMF \(c_{k} (t)\)

    $$ \begin{gathered} c_{0} (t) = W_{s}^{\varepsilon } (0,t) * \phi_{1} (t), \hfill \\ c_{k} (t) = W_{s}^{\varepsilon } (n,t) * \psi_{k} (t). \hfill \\ \end{gathered} $$
    (15)

Moreover, the original signal is reconstructed by

$$ s(t) = W_{s}^{\varepsilon } (0,t) * \phi_{1} (t) + \sum\limits_{k = 1}^{K} {W_{s}^{\varepsilon } (n,t) * \psi_{k} (t)} . $$
(16)

Using Eq. (16), EWT decomposes a non-stationary seismic signal into a couple of band-limited IMFs with different dominant frequencies. Then, we could use TFPF-based algorithms to the selected IMFs to suppress seismic noise in this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, N., Yang, Y., Li, Z. et al. Seismic signal de-noising using time–frequency peak filtering based on empirical wavelet transform. Acta Geophys. 68, 425–434 (2020). https://doi.org/10.1007/s11600-020-00413-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-020-00413-4

Keywords

Navigation