Skip to main content
Log in

DHI evaluation by combining rock physics simulation and statistical techniques for fluid identification of Cambrian-to-Cretaceous clastic reservoirs in Pakistan

  • Research Article - Applied Geophysics
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The use of seismic direct hydrocarbon indicators is very common in exploration and reservoir development to minimise exploration risk and to optimise the location of production wells. DHIs can be enhanced using AVO methods to calculate seismic attributes that approximate relative elastic properties. In this study, we analyse the sensitivity to pore fluid changes of a range of elastic properties by combining rock physics studies and statistical techniques and determine which provide the best basis for DHIs. Gassmann fluid substitution is applied to the well log data and various elastic properties are evaluated by measuring the degree of separation that they achieve between gas sands and wet sands. The method has been applied successfully to well log data from proven reservoirs in three different siliciclastic environments of Cambrian, Jurassic, and Cretaceous ages. We have quantified the sensitivity of various elastic properties such as acoustic and extended elastic (EEI) impedances, elastic moduli (K sat and K satμ), lambda–mu–rho method (λρ and μρ), P-to-S-wave velocity ratio (V P/V S), and Poisson’s ratio (σ) at fully gas/water saturation scenarios. The results are strongly dependent on the local geological settings and our modeling demonstrates that for Cambrian and Cretaceous reservoirs, K satμ, EEI, V P/V S, and σ are more sensitive to pore fluids (gas/water). For the Jurassic reservoir, the sensitivity of all elastic and seismic properties to pore fluid reduces due to high overburden pressure and the resultant low porosity. Fluid indicators are evaluated using two metrics: a fluid indicator coefficient based on a Gaussian model and an overlap coefficient which makes no assumptions about a distribution model. This study will provide a potential way to identify gas sand zones in future exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ahmed N, Khalid P, Ghazi S, Anwar AW (2015) AVO forward modeling and attributes analysis for fluid’s identification: a case study. Acta Geod Geophys 50(4):377–390. doi:10.1007/s40328-014-0097-x

    Article  Google Scholar 

  • Ahmed N, Khalid P, Ali T, Ahmad SR, Akhtar S (2016) Differentiation of pore fluids using amplitude versus offset attributes in clastic reservoirs, Middle Indus Basin, Pakistan. Arab J Sci Eng 41(6):2315–2323. doi:10.1007/s13369-015-1992-3

    Article  Google Scholar 

  • Aki K, Richards PG (1980) Quantitative seismology: theory and methods. W. H. Freeman, San Francisco

    Google Scholar 

  • Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Mech Eng 146(1):54–62

    Google Scholar 

  • Avseth P, Mukerji T, Mavko G (2005) Quantitative seismic interpretation. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Baddari K, Bellalem F, Baddari I, Makdeche S (2016) Some probabilistic and statistical properties of the seismic regime of Zemmouri (Algeria) seismoactive zone. Acta Geophys 64(5):1275–1310. doi:10.1515/acgeo-2016-0049

    Article  Google Scholar 

  • Baig MO, Harris NB, Ahmed H, Baig MOA (2016) Controls on reservoir diagenesis in the Lower Goru Sandstone Formation, Lower Indus Basin, Pakistan. J Petrol Geol 39(1):29–48. doi:10.1111/jpg.12626

    Article  Google Scholar 

  • Baqri SRH, Baloch MQ (1991) Sedimentological studies and palaeo environments of Khewra Sandstone with reference to its hydrocarbon potential. Pak J Pet Technol Altern Fuels 1:23–38

    Google Scholar 

  • Batzle ML, Wang Z (1992) Seismic properties of pore fluids. Geophysics 57(11):1396–1408. doi:10.1190/1.1443207

    Article  Google Scholar 

  • Batzle ML, Han DH, Hofmann R (2001) Optimal hydrocarbon indicators. In: 71th SEG international exposition and annual meeting 2001, September 9–14, 2001, San Antonio. doi:10.1190/1.1816446

  • Castagna JP, BatzleML Eastwood RL (1985) Relationships between compressional and shear-wave velocities in clastic silicate rocks. Geophysics 50(4):551–570. doi:10.1190/1.1441933

    Article  Google Scholar 

  • Castagna JP, Smith SW (1994) Comparison of AVO indicators: a modeling study. Geophysics 59(12):1849–1855. doi:10.1190/1.1443572

    Article  Google Scholar 

  • Clavier C, Coates G, Dumanoir J (1984) The theoretical and experimental basis for the ‘dual water’ model for the interpretation of shaly sands. Soc Pet Eng J 24(2):153–168. doi:10.2118/6859-PA

    Article  Google Scholar 

  • Connolly P (1999) Elastic impedance. Lead Edge 18(4):438–452. doi:10.1190/1.1438307

    Article  Google Scholar 

  • Connolly P, Hughes M (2014) The application of very large numbers of pseudo-wells for reservoir characterization. Society of Petroleum Engineers 2014, SPE-171879-MS, November 10–13, 2014, Abu Dhabi. doi:10.2118/171879-MS

  • Dillon L, Schwedersky G, Vasquez G, Velloso R, Nunes C (2003) A multiscale DHI elastic attributes evaluation. Lead Edge 22(10):1024–1029. doi:10.1190/1.1623644

    Article  Google Scholar 

  • Doyen P (2007) Seismic reservoir characterization. EAGE, Netherlands

    Google Scholar 

  • Gassmann F (1951) Uber die elastizitat poroser medien. Verteljahrss-chrift der Naturforschenden Gesellschaft in Zurich 96:1–23

    Google Scholar 

  • Gholami R, Moradzadeh A, Rasouli V, Hanachi J (2014) Shear wave velocity prediction using seismic attributes and well log data. Acta Geophys 62(4):818–848. doi:10.2478/s11600-013-0200-7

    Article  Google Scholar 

  • Goodway W, Chen T, Downton J (1997) Improved AVO fluid detection and lithology discrimination using Lamé petrophysical Parameters; “Lambda–Rho”, “Mu–Rho”, and “Lambda/Mu fluid stack”, from P and S inversions. In: 67th SEG annual international meeting 1997, November 2–7, 1997, Dallas. doi:10.1190/1.1885795

  • Grana D (2014) Probabilistic approach to rock physics modeling. Geophysics 79(2):D123–D143. doi:10.1190/GEO2013-0333.1

    Article  Google Scholar 

  • Grana D, Rossa ED (2010) Probabilistic petrophysical-properties estimation integrating statistical rock physics with seismic inversion. Geophysics 75(3):O21–O37. doi:10.1190/1.3386676

    Article  Google Scholar 

  • Grana D, Schlanser K, Campbell-Stone E (2015) Petroelastic and geomechanical classification of lithologic facies in the Marcellus Shale. Interpretation 3(1):SA51–SA63. doi:10.1190/INT-2014-0047.1

    Article  Google Scholar 

  • Hedlin K (2000) Pore space modulus and extraction using AVO. In: 70th SEG annual international meeting 2000, August 6–1, 2000, Calgary. doi:10.1190/1.1815749

  • Hussain M, Ahmed N, Chun WY, Khalid P, Mahmood A, Ahmad SR, Rasool U (2017) Reservoir characterization of basal sand zone of lower Goru formation by petrophysical studies of geophysical logs. J Geol Soc India 89(3):331–338. doi:10.1007/s12594-017-0614-y

    Article  Google Scholar 

  • Hydrocarbon Development Institute of Pakistan (2008) Energy Year Book, 2008. Ministry of Petroleum and Natural Resources, Pakistan

    Google Scholar 

  • Jamil A, Waheed A, Sheikh RA (2012) Pakistan’s major petroleum plays: an overview of dwindling reserves. Search and Discovery article #10399 (2012), PAPG/SPE Annual Technical Conference 2009, December 03–05, 2012, Islamabad

  • Kadri IB (1995) Petroleum geology of Pakistan. Pakistan Petroleum Ltd, Karachi

    Google Scholar 

  • Khalid P, Ahmed N (2016) Modulus defect, velocity dispersion and attenuation in partially-saturated reservoirs of Jurassic sandstone, Indus Basin, Pakistan. Stud Geophys Geod 60(1):112–129. doi:10.1007/s11200-015-0804-2

    Article  Google Scholar 

  • Krief M, Garat J, Stellingwerff J, Ventre J (1990) A petrophysical interpretation using the velocities of P and S waves (full-waveform sonic). Log Analyst 31(8):355–369

    Google Scholar 

  • Kumar D (2006) A Tutorial on Gassmann fluid substitution: formulation, algorithm and matlab code. Geohorizons 11(1):4–12

    Google Scholar 

  • Malureanu I, Boaca T, Daniela-Doina N (2016) New relations of water saturation’s Calculus from well logs. Acta Geophys 64(5):1542–1562. doi:10.1515/acgeo-2016-0063

    Article  Google Scholar 

  • Pakistan Petroleum Information Service (2009) Upstream Petroleum activities. Ministry of Petroleum and Natural Resources

  • Poupon A, Levaux J (1971) Evaluation of water saturation in shaly formations. Society of Professional Well Log Analysts 12th annual logging symposium transactions, Paper O

  • Quakenbush M, Shangn B, Tuttle C (2006) Poisson impedance. Lead Edge 25(2):128–138. doi:10.1190/1.2172301

    Article  Google Scholar 

  • Raza HA, Ahmad W, Ali SM, Mujtaba M, Alam S, Shafeeq M, Iqbal M, Noor I, Riaz N (2008) Hydrocarbon prospects of Punjab Platform Pakistan, with special reference to Bikaner-Nagaur Basin of India, Pakistan. J Hydrocarbon Res 18(6):1–33

    Google Scholar 

  • Rider MH (2002) The geological interpretation of well logs. Rider French Consulting Ltd, Sutherland

    Google Scholar 

  • Russell B, Hedlin K, Hilterman F, Lines L (2003) Fluid-property discrimination with AVO: a Biot–Gassmann perspective. Geophysics 68(1):29–39. doi:10.1190/1.1543192

    Article  Google Scholar 

  • Schlumberger (1997) Log interpretation charts. Schlumberger well services, Houston

    Google Scholar 

  • Shams O, Qureshi AW, Abbasi IA (2005) Lithofacies, sand-bodies geometry and depositional setting of the Datta Formation in Surghar Range, North Pakistan. In: Annual technical conference 2005, November 21–23, 2005, Islamabad

  • Tarantola A (2005) Inverse problem theory. SIAM, Paris, France

  • Whitcombe DN (2002) Elastic impedance normalization. Geophysics 67(1):60–62. doi:10.1190/1.1451331

    Article  Google Scholar 

  • Whitcombe DN, Connolly PA, Reagan RL, Redshaw TC (2002) Extended elastic impedance for fluid and lithology prediction. Geophysics 67(1):63–67. doi:10.1190/1.1451337

    Article  Google Scholar 

  • Zaidi SNA, Brohi IA, Ramzan K, Ahmed N, Mehmood F, Brohi AU (2013) Distribution and hydrocarbon potential of Datta Sands in Upper Indus Basin, Pakistan. Sindh Univ Res J 45(2):325–332

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge to Directorate General Petroleum Concessions (DGPC) for providing data to complete the present work. The Institute of Geology, University of the Punjab is also acknowledged for facilitating me in the compilation of this work. This research paper is from the Ph.D. work of Mr. Nisar Ahmed, Lecturer, Institute of Geology, University of the Punjab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nisar Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, N., Khalid, P., Shafi, H.M.B. et al. DHI evaluation by combining rock physics simulation and statistical techniques for fluid identification of Cambrian-to-Cretaceous clastic reservoirs in Pakistan. Acta Geophys. 65, 991–1007 (2017). https://doi.org/10.1007/s11600-017-0070-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-017-0070-5

Keywords

Navigation