Skip to main content
Log in

Site-specific uniform hazard spectrum in Eastern Turkey based on simulated ground motions including near-field directivity and detailed site effects

  • Research Article
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

In this study, stochastic earthquake catalog of the Erzincan region in Turkey is generated based on synthetic ground motions. Monte Carlo simulation method is used to identify the spatial and temporal distribution of events. Ground motion time histories are generated using stochastic simulation methodology. Annual exceedance rate of each ground motion amplitude is calculated through statistical distribution of the complete set of ground motions. The results are compared with classical probabilistic seismic hazard analysis (PSHA). Classical PSHA generally produces larger spectral amplitudes than the proposed study due to wide range of aleatory variability. The effects of near-field forward directivity and detailed site response are also investigated on the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(Adopted from Askan et al. 2013)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

(Adopted from Askan 2015)

Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. Average shear wave velocity for the top 30 m of the subsurface profile.

References

  • Abrahamson NA (2000) Effects of rupture directivity on probabilistic seismic hazard analysis. In: Proc. Sixth International Conference on Seismic Zonation: Managing Earthquake Risk in the 21st Century, Palm Springs, CA

  • Abrahamson NA, Silva W (2008) Summary of the Abrahamson & Silva NGA ground-motion relations. Earthq Spectra 24(1):67–97

    Article  Google Scholar 

  • Akansel VH, Ameri G, Askan A, Caner A, Erdil B, Kale Ö, Okuyucu D (2014) The 23 October 2011 Mw 7.0 Van (Eastern Turkey) earthquake: characteristics of recorded strong ground motions and post earthquake condition assessment of infrastructure and cultural heritage. Earthq Spectra 30(2):657–682

    Article  Google Scholar 

  • Akkar S, Bommer J (2010) Empirical equations for the prediction of PGA, PGV and spectral accelerations in Europe, the Mediterranean region and the Middle East. Seismol Res Lett 81(2):195–206. doi:10.1785/gssrl.81.2.195

    Article  Google Scholar 

  • Ambraseys NN, Douglas J, Sarma SK, Smit PM (2005) Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: horizontal peak ground acceleration and spectral acceleration. Bull Earthq Eng 3:1–53. doi:10.1007/s10518-005-0183-0

    Article  Google Scholar 

  • Anderson J, Hough SE (1984) A model for the shape of the fourier amplitude spectrum of acceleration at high frequencies. Bull Seismol Soc Am 74(5):1969–1993

    Google Scholar 

  • Arias A (1970) A Measure of Earthquake Intensity. In: Hansen R (ed) Seismic Design for Nuclear Power Plants. MIT press, Cambridge, pp 438–483

    Google Scholar 

  • Askan A (2015) Estimation of Potential Seismic Damage in Erzincan, Project TUJJB-UDP-01-12

  • Askan A, Sisman FN, Ugurhan B (2013) Stochastic strong ground motion simulations in sparsely-monitored regions: A validation and sensitivity study on the 13 March 1992 Erzincan (Turkey) earthquake. Soil Dyn Earthq Eng 55:170–181

    Article  Google Scholar 

  • Assatourians K, Atkinson G (2013) EqHaz: An open-source probabilistic seismic-hazard code based on the Monte Carlo simulation approach. Seismol Res Lett 84(3):516–524. doi:10.1785/0220120102

    Article  Google Scholar 

  • Atkinson G, Assatourians K, Boore MD, Campbell KW, Motazedian D (2009) A guide to differences between stochastic point-source and stochastic finite-fault simulations. Bull Seismol Soc Am 99(6):3192–3201. doi:10.1785/0120090058

    Article  Google Scholar 

  • Banan KK, Kolaj M, Motazedian D, Sivathayalan S, Hunter JA, Crow HL, Pugin AJ, Brooks GR, Pyne M (2012) Seismic site response analysis for Ottawa, Canada: A comprehensive study using measurements and numerical simulations. Bull Seismol Soc Am 102(5):1976–1993. doi:10.1785/0120110248

    Article  Google Scholar 

  • Beresnev I, Atkinson GM (1997) Modeling finite-fault radiation from the ωn spectrum. Bull Seismol Soc Am 87:67–84

    Google Scholar 

  • Beresnev IA, Atkinson GM, Johnson PA, Field EH (1998) Stochastic finite-fault modeling of ground motions from the 1994 Northridge, California, earthquake. II. Widespread nonlinear response at soil sites. Bull Seismol Soc Am 88(6):1402–1410

    Google Scholar 

  • Bolt BA (1973) Duration of strong motion. In: Proc. 5th World Conference of Earthquake Engineering, Rome, Italy

  • Bommer J, Crowley H (2006) The influence of ground-motion variability in earthquake loss modelling. Bull Earthq Eng 4:231–248. doi:10.1007/s10518-006-9008-z

    Article  Google Scholar 

  • Bommer J, Martinez-Pereira A (1999) The effective duration of earthquake strong motion. J Earthq Eng 3(2):127–172. doi:10.1080/13632469909350343

    Google Scholar 

  • Boore MD (2003) Simulation of ground motion using the stochastic method. Pure Appl Geophys 160(3–4):635–676

    Article  Google Scholar 

  • Boore MD (2009) Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM. Bull Seismol Soc Am 99(6):3202–3216. doi:10.1785/0120090056

    Article  Google Scholar 

  • Boore MD (2013) The uses and limitations of the square-root-impedance method for computing site amplification. Bull Seismol Soc Am 103(4):2356–2368. doi:10.1785/0120120283

    Article  Google Scholar 

  • Boore MD, Joyner WB (1997) Site amplifications for generic rock sites. Bull Seismol Soc Am 87(2):327–341

    Google Scholar 

  • Bray J, Rodriguez-Marek A (2004) Characterization of forward-directivity ground motions in the near-fault region. Soil Dyn Earthq Eng 24:815–828. doi:10.1016/j.soildyn.2004.05.001

    Article  Google Scholar 

  • Cao T, Petersen MD, Cramer CH, Toppozada TR, Reichle MS, Davis JF (1999) The calculation of expected loss using probabilistic seismic hazard. Bull Seismol Soc Am 89(4):867–876

    Google Scholar 

  • Chopra S, Kumar D, Choudhury P, Yadav RBS (2012) Stochastic finite fault modelling of Mw 4.8 earthquake in Kachchh, Gujarat, India. J Seismol 16:435–449. doi:10.1007/s10950-012-9280-0

    Article  Google Scholar 

  • Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606

    Google Scholar 

  • Cramer CH (2006) Quantifying the uncertainty in site amplification modeling and its effects on site-specific seismic-hazard estimation in the Upper Mississippi embayment and adjacent areas. Bull Seismol Soc Am 96(6):2008–2020. doi:10.1785/0120060037

    Article  Google Scholar 

  • Crowley H, Bommer J (2006) Modelling seismic hazard in earthquake loss models with spatially distributed exposure. Bull Earthq Eng 4(3):249–273. doi:10.1007/s10518-006-9009-y

    Article  Google Scholar 

  • Demartinos K, Faccioli E (2012) Probabilistic seismic performance assessment of classes of buildings using physics-based simulations and ground-motion prediction equations. J Earthq Eng 16(1):40–60

    Article  Google Scholar 

  • Deniz A (2006) Estimation of Earthquake Insurance Premium Rates Based on Stochastic Methods, Master of Science, Middle East Technical University

  • Eads L, Miranda E, Krawinkler H, Lignos DG (2013) An efficient method for estimating the collapse risk of structures in seismic regions. Earthq Eng Struct Dyn 42:25–41. doi:10.1002/eqe.2191

    Article  Google Scholar 

  • Ellingwood BR, Celik OC, Kinali K (2007) Fragility assessment of building structural systems in mid-America. Earthq Eng Struct Dyn 36:1935–1952. doi:10.1002/eqe.693

    Article  Google Scholar 

  • Frankel A (1993) Three-dimensional simulations of the ground motions in the San Bernardino Valley, California, for hypothetical earthquakes on the San Andreas fault. Bull Seismol Soc Am 83:1020–1041

    Google Scholar 

  • Graves RW, Pitarka A (2010) Broadband ground-motion simulation using a hybrid approach. Bull Seismol Soc Am 100(5A):2095–2123. doi:10.1785/0120100057

    Article  Google Scholar 

  • Gu P, Wen YK (2007) A record-based method for the generation of tridirectional uniform hazard-response spectra and ground motions using the Hilbert-Huang transform. Bull Seismol Soc Am 97(5):1539–1556

    Article  Google Scholar 

  • Hashash Y, Moon S (2011) Site amplification factors for deep deposits and their application in seismic hazard analysis for central US, Under USGS/NEHRP Grant: G09AP00123, University of Illinois at Urbana-Champaign

  • Hung TV, Kiyomiya O (2013) Source Parameter Estimation and Stochastic Ground Motion Simulation Based on Recorded Accelerograms in Northwestern Vietnam. J Earthq Eng 17(3):304–322

    Article  Google Scholar 

  • Joyner WB, Warrick RE, Fumal TE (1981) The effect of Quaternary alluvium on strong ground motion in the Coyote Lake, California, earthquake of 1979. Bull Seismol Soc Am 71:1333–1349

    Google Scholar 

  • Kempton J, Stewart JP (2006) Prediction equations for significant duration of earthquake ground motions considering site and near-source effects. Earthq Spectra 22(4):985–1013

    Article  Google Scholar 

  • Kramer SL (1996) Geotechnical earthquake engineering. Prentice Hall Inc, Upper Saddle River

    Google Scholar 

  • Luco N, Ellingwood BR, Hamburger RO, Hooper JD, Kimball JK, Kircher CA (2007) Risk-targeted versus current seismic design maps for the conterminous United States. In: Proc. SEAOC 2007 Convention Proceedings, Squaw Creek, California

  • Mavroeidis GP, Papageorgiou AS (2003) A mathematical representation of near-fault ground motions. Bull Seismol Soc Am 93(3):1099–1131

    Article  Google Scholar 

  • McGuire RK (2004) Seismic hazard and risk analysis. MNO-10, Earthquake Engineering Research Institute

  • McGuire RK, Arabasz WJ (1990) An introduction to probabilistic seismic hazard analysis. Soc Explor Geophys 1:333

    Google Scholar 

  • Moghaddam H, Fanaie N, Motazedian D (2010) Estimation of stress drop for some large shallow earthquakes using stochastic point source and finite fault modeling. Sci Iran 17(3):217–235

    Google Scholar 

  • Mohammadioun B, Serva L (2001) Stress drop, slip type, earthquake magnitude, and seismic hazard. Bull Seismol Soc Am 91(4):604–707

    Article  Google Scholar 

  • Motazedian D, Atkinson GM (2005) Stochastic finite-fault modeling based on a dynamic corner frequency. Bull Seismol Soc Am 95(3):995–1010. doi:10.1785/0120030207

    Article  Google Scholar 

  • Musson RMW (2000) The use of Monte Carlo simulations for seismic hazard assessment in the UK. Anadali Di Geofisica 43(1):1–9

    Google Scholar 

  • Naeim F, Lew M (1995) On the use of design spectrum compatible time histories. Earthq Spectra 11(1):111–127

    Article  Google Scholar 

  • Nicknam A, Abbasnia R, Bozorgnasab M, Eslamian Y (2010) Synthesizing Broadband Time-Histories at Near Source Sites; Case Study, 2003 Bam Mw6.5 Earthquake. J Earthq Eng 14(6):898–917

    Article  Google Scholar 

  • Novikova EI, Trifunac MD (1994) Duration of strong ground motion in terms of earthquake magnitude, epicentral distance, site condition and site geometry. Earthq Eng Struct Dyn 23:1023–1043

    Article  Google Scholar 

  • Olsen KB, Archuleta RJ, Matarese JR (1996) Three-dimensional simulation of a magnitude 7.75 earthquake on the San Andreas fault. Science 270:1628–1632

    Article  Google Scholar 

  • Papoulia J, Fahjan YM, Hutchings L, Novikova T (2015) PSHA for Broad-Band Strong Ground-Motion Hazards in the Saronikos Gulf, Greece, from Potential Earthquake with Synthetic Ground Motions. J Earthq Eng 19(4):624–648

    Article  Google Scholar 

  • Raschke M (2014) Insufficient Statistical Model Development of Ground-Motion Relations for Regions with Low Seismicity. Bull Seismol Soc Am 104(2):1002–1005. doi:10.1785/0120130215

    Article  Google Scholar 

  • Roumelioti Z, Kiratzi A, Theodulidis N (2004) Stochastic strong ground-motion simulation of the 7 September 1999 Athens (Greece) earthquake. Bull Seismol Soc Am 94(3):1036–1052

    Article  Google Scholar 

  • Schnabel PB, Lysmer J, Seed HB (1972) SHAKE: a computer program for earthquake response analysis of horizontally layered sites. Earthquake Engineering Research Center, University of California, Berkeley, p 102

    Google Scholar 

  • Shahi SK, Baker JW (2011) An empirically calibrated framework for including the effects of near-fault directivity in probabilistic seismic hazard analysis. Bull Seismol Soc Am 101(2):742–755. doi:10.1785/0120100090

    Article  Google Scholar 

  • Somerville PG (1998) Development of an improved ground motion representation for near fault ground motions. In: Proc. SMIP98 Seminar on Utilization of Strong-Motion Data, Oakland, CA

  • Tahghighi H (2012) Simulation of Strong Ground Motion Using the Stochastic Method: Application and Validation for Near-Fault Region. J Earthq Eng 16(8):1230–1247

    Article  Google Scholar 

  • Thenhaus PC, Campbell KW (2003) Seismic hazard analysis. In: Chan WF, Scawthorn C (eds) Earthquake engineering handbook. CRC Press, Boca Raton

    Google Scholar 

  • Trifunac MD, Brady AG (1975) A study on the duration of strong earthquake ground motion. Bulletinof Seismological Society of America 65(3):581–626

    Google Scholar 

  • Ugurhan B, Askan Gundogan A (2010) Stochastic strong ground motion simulation of the 12 November 1999 Düzce (Turkey) earthquake using a dynamic corner. Bull Seismol Soc Am 100(4):1498–1512. doi:10.1785/0120090358

    Article  Google Scholar 

  • Ugurhan B, Askan A, Akinci A, Malagnini L (2012) Strong-ground-motion simulation of the 6 April 2009 L’Aquila, Italy, earthquake. Bull Seismol Soc Am 102(4):1429–1445. doi:10.1785/0120110060

    Article  Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Wen YK, Wu CL (2001) Uniform hazard ground motions for mid-America cities. Earthq Spectr 17(2):359–384

    Article  Google Scholar 

  • Wu CL, Wen YK (2000) Earthquake Ground Motion Simulation and Reliability Implications, 630, Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign

  • Yalcinkaya E (2005) Stochastic finite-fault modeling of ground motions from the June 27, 1998 Adana-Ceyhan earthquake. Earth Planets Space 57:107–115

    Article  Google Scholar 

  • Zafarani H, Noorzad A, Ansari A, Bargi K (2009) Stochastic modeling of Iranian earthquakes and estimation of ground motion for future earthquakes in Greater Tehran. Soil Dyn Earthq Eng 29:722–741

    Article  Google Scholar 

Download references

Acknowledgements

Aida Azari Sisi was a graduate student fellowship recipient of TUBITAK-2215 Program. We are grateful for this support. We also thank Fatma Nurten Sisman Dersan for providing theoretical site amplification factors. We are grateful to David Boore and Dariush Motazedian for providing SMSIM and EXSIM as well as sharing their valuable comments during our initial applications in the past.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aida Azari Sisi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azari Sisi, A., Askan, A. & Erberik, M.A. Site-specific uniform hazard spectrum in Eastern Turkey based on simulated ground motions including near-field directivity and detailed site effects. Acta Geophys. 65, 309–330 (2017). https://doi.org/10.1007/s11600-017-0032-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-017-0032-y

Keywords

Navigation