Skip to main content
Log in

Berberine Ameliorates Oxygen-glucose Deprivation/Reperfusion-induced Apoptosis by Inhibiting Endoplasmic Reticulum Stress and Autophagy in PC12 Cells

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

This study aimed to elucidate the molecular mechanisms by which berberine protects against cerebral ischemia/reperfusion (I/R) injury. The oxygen-glucose deprivation/reperfusion (OGD/R) PC12 model was established. Cell counting kit-8 (CCK-8) was used to detect the toxicity of berberine and the viability of PC12 cells. Hoechst 33258 staining and flow cytometry were used to observe the nuclear morphology, and changes of apoptosis and reactive oxygen species (ROS), respectively. Western blotting and immunofluorescence assay were employed to detect autophagy-related proteins [microtubule-associated protein 1A/1B-light chain 3 (LC3), P62/SQSTM-1, Beclin-1] and endoplasmic reticulum (ER) stress-related markers [glucose-regulated protein 78 (GRP78), C/EBP homologous protein (CHOP), Bcl-2-associated X (Bax) and cleaved caspase-3]. The GFP-RFP-LC3 adenovirus was used to assay the change of autophagic flux. Our results showed that berberine could increase the viability of PC12 cells, decrease the concentrations of ROS after OGD/R treatment, and suppress OGD/R-induced ER stress and autophagy. Moreover, the results revealed the involvement of the mammalian target of rapamycin (mTOR) pathway in the induction of autophagy, and berberine could activate the phosphorylation of mTOR and thus mitigate autophagy. In conclusion, our study suggested that berberine may protect against OGD/R-induced apoptosis by regulating ER stress and autophagy, and it holds promises in the treatment of cerebral I/R injury.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moon HG, Cho SC, Jeong SW, et al. Early versus late thrombolysis in acute arterial occlusion of lower extremity. Int J Cardiol, 2017,228(2): 86–89

    PubMed  Google Scholar 

  2. Hu JN, Huang SW, Zhu L, et al. Tissue Plasminogen Activator-Porous Magnetic Microrods for Targeted Thrombolytic Therapy after Ischemic Stroke. ACS Mater Interfaces, 2018, (10): 32988–32997

  3. Cao Y, Zhang L, Sun S, et al. Neuroprotective effects of syringic acid against OGD/R-induced injury in cultured hippocampal neuronal cells. Int J Mol Med, 2016,38(8): 567–573

    CAS  PubMed  Google Scholar 

  4. Absar S, Gupta N, Nahar K, et al. Engineering of plasminogen activators for targeting to thrombus and heightening thrombolytic efficacy. J Thromb Haemost, 2015,13(9): 1545–1556

    CAS  PubMed  Google Scholar 

  5. Vogelgesang A, Lange C, Blümke L, et al. Ischaemic stroke and the recanalization drug tissue plasminogen activator interfere with antibacterial phagocyte function. J Neuroinflammation, 2017,14(1): 140

    PubMed  PubMed Central  Google Scholar 

  6. Verfaillie T, Rubio N, Garg AD, et al. PERK is required at the ER-mitochondrial contact sites to convey apoptosis after ROS-based ER stress. Cell Death Differ, 2012,19(11):1880–1891

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zou J, Fei Q, Xiao H, et al. VEGF-A promotes angiogenesis after acute myocardial infarction through increasing ROS production and enhancing ER stress-mediated autophagy. J Cell Physiol, 2019, 234(10): 17690–17703

    CAS  PubMed  Google Scholar 

  8. Dai Y, Zhang H, Zhang J, et al. Isoquercetin attenuates oxidative stress and neuronal apoptosis after ischemia/reperfusion injury via Nrf2-mediated inhibition of the NOX4/ROS/NF-κB pathway. Chem Bio Interact, 2018,284(3): 32–40

    CAS  Google Scholar 

  9. Hong S, Kwon J, Kim DW, et al. Mulberrofuran G Protects Ischemic Injury-induced Cell Death via Inhibition of NOX4-mediated ROS Generation and ER Stress. Phytother Res, 2017,31(2): 321–329

    CAS  PubMed  Google Scholar 

  10. Gao X, Chen W, Li J, et al. The protective effect of alpha-lipoic acid against brain ischemia and reperfusion injury via mTOR signaling pathway in rats. Neuroscience Lett, 2018,671(4):108–113

    CAS  Google Scholar 

  11. Wang M, Kaufman RJ. Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature, 2016,529(7586):326–335

    CAS  PubMed  Google Scholar 

  12. Preston GM, Brodsky JL. The evolving role of ubiquitin modification in endoplasmic reticulum-associated degradation. Biochem J, 2017,474(4):445–469

    CAS  PubMed  Google Scholar 

  13. Hafiz Z, Geum L, Hyung-Ryong K, et al. Endoplasmic Reticulum Stress and Associated ROS. Int J Mol Sci, 2016,17(3): 327

    Google Scholar 

  14. Hotamisligil GKS. Endoplasmic Reticulum Stress and the Inflammatory Basis of Metabolic Disease. Cell, 2010,140(6):900–917

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Bhardwaj R, Tandon C, Dhawan DK, et al. Effect of endoplasmic reticulum stress inhibition on hyperoxaluria-induced oxidative stress: influence on cellular ROS sources. World J Urol, 2017, 35(12):1955–1965

    PubMed  Google Scholar 

  16. Wang K, Zhu X, Zhang K, et al. Puerarin inhibits amyloid β-induced NLRP3 inflammasome activation in retinal pigment epithelial cells via suppressing ROS-dependent oxidative and endoplasmic reticulum stresses. Exp Cell Res, 2017,357(2): 335–340

    CAS  PubMed  Google Scholar 

  17. Lei Y, Wang S, Ren B, et al. CHOP favors endoplasmic reticulum stress-induced apoptosis in hepatocellular carcinoma cells via inhibition of autophagy. PLoS One, 2017,12(8): e0183680

    PubMed  PubMed Central  Google Scholar 

  18. Martin-Jiménez CA, García-Vega á, Cabezas R, et al. Astrocytes and endoplasmic reticulum stress: A bridge between obesity and neurodegenerative diseases. Prog Neurobiol, 2017,158(11): 45–68

    PubMed  Google Scholar 

  19. Wu H, Ye M, Yang J, et al. Modulating endoplasmic reticulum stress to alleviate myocardial ischemia and reperfusion injury from basic research to clinical practice: A long way to go. Int J Cardiol, 2016,223(11): 630–631

    PubMed  Google Scholar 

  20. Tao JH, Shen C, Sun YC, et al. Neuroprotective effects of pinocembrin on ischemia/reperfusion-induced brain injury by inhibiting autophagy. Biomed Pharmacother, 2018,106(8): 1003–1010

    CAS  PubMed  Google Scholar 

  21. Mialet-Perez J, Vindis C. Autophagy in health and disease: focus on the cardiovascular system. Essays Biochem, 2017,61(6): 721–732

    PubMed  Google Scholar 

  22. Liu Y, Levine B. Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ, 2015,22(3): 367–376

    CAS  PubMed  Google Scholar 

  23. Prieto-Domínguez N, Garcia-Mediavilla MV, Sanchez-Campos S, et al. Autophagy as a Molecular Target of Flavonoids Underlying their Protective Effects in Human Disease. Curr Med Chem, 2018,25(7): 814–838

    PubMed  Google Scholar 

  24. Wang K, Feng X, Chai L, et al. The metabolism of berberine and its contribution to the pharmacological effects. Drug Metab Rev, 2017,49(2): 139–157

    PubMed  Google Scholar 

  25. Liu OQ, Chen SP, Sun J, et al. Berberine protects against ischemia-reperfusion injury: A review of evidence from animal models and clinical studies. Pharmacol Res, 2019,148:104385

    CAS  PubMed  Google Scholar 

  26. Sun Y, Jin C, Zhang X, et al. Restoration of GLP-1 secretion by berberine is associated with protection of colon enterocytes from mitochondrial overheating in diet-induced obese mice. Nutr Diabetes, 2018,8(1): 53

    PubMed  PubMed Central  Google Scholar 

  27. Yuan NN, Cai CZ, Wu MY, et al. Neuroprotective effects of berberine in animal models of Alzheimer’s disease: a systematic review of pre-clinical studies. BMC Complement Altern Med, 2019,19(1): 109

    PubMed  PubMed Central  Google Scholar 

  28. Gu L, Li N, Yu W, et al. Berberine Reduces Rat Intestinal Tight Junction Injury Induced by Ischemia-Reperfusion Associated with the Suppression of Inducible Nitric Oxide Synthesis. Am J Chin Med, 2013,41(6): 1297–1312

    CAS  PubMed  Google Scholar 

  29. Song S, Tan J, Miao Y, et al. Crosstalk of autophagy and apoptosis: Involvement of the dual role of autophagy under ER stress. J Cell Physiol, 2017,232(11): 2977–2984

    CAS  PubMed  Google Scholar 

  30. Claudio H. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol, 2012,13(2): 89–102

    Google Scholar 

  31. Addinsall AB, Wright CR, Andrikopoulos S, et al. Emerging roles of endoplasmic reticulum-resident selenoproteins in the regulation of cellular stress responses and the implications for metabolic disease. Biochem J, 2018,475(6): 1037–1057

    CAS  PubMed  Google Scholar 

  32. Csordás G, Weaver D, Hajnóczky G. Endoplasmic Reticular-Mitochondrial Contactology: Structure and Signaling Functions. Trends Cell Biol, 2018,28(7):523–540

    PubMed  PubMed Central  Google Scholar 

  33. Iurlaro R, Muñoz-Pinedo C. Cell death induced by endoplasmic reticulum stress. FEBS J, 2016,283(14): 2640–2652

    CAS  PubMed  Google Scholar 

  34. Arduíno DM, Esteves AR, Cardoso SM, et al. Endoplasmic reticulum and mitochondria interplay mediates apoptotic cell death: Relevance to Parkinson’s disease. Neurochem Int, 2009,55(5): 341–348

    PubMed  Google Scholar 

  35. Kropski JA, Blackwell TS. Endoplasmic reticulum stress in the pathogenesis of fibrotic disease. J Clin Invest, 2018,128(1):64–73

    PubMed  PubMed Central  Google Scholar 

  36. Zhao GL, Yu LM, Gao WL, et al. Berberine protects rat heart from ischemia/reperfusion injury via activating JAK2/STAT3 signaling and attenuating endoplasmic reticulum stress. Acta Pharmacol Sin, 2016,37(3): 354–367

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Nie T, Yang S, Ma H, et al. Regulation of ER stress-induced autophagy by GSK3β-TIP60-ULK1 pathway. Cell Death Dis, 2016,7(12): e2563

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Levine B, Kroemer G. Autophagy in the Pathogenesis of Disease. Cell, 2008,132(1):27–42

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Sun J, Yue F. Suppression of REDD1 attenuates oxygen glucose deprivation/reoxygenation-evoked ischemic injury in neuron by suppressing mTOR-mediated excessive autophagy. J Cell Biochem, 2019,120(9): 14771–14779

    CAS  PubMed  Google Scholar 

  40. Huang KY, Wang JN, Zhou YY, et al. Antithrombin III Alleviates Myocardial Ischemia/Reperfusion Injury by Inhibiting Excessive Autophagy in a Phosphoinositide 3- Kinase/Akt-Dependent Manner. Front Pharmacol, 2019,10:516

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Gao C, Wang R, Li B, et al. TXNIP/Redd1 Signaling and Excessive Autophagy: A Novel Mechanism of Myocardial Ischemia/Reperfusion Injury in Mice. Cardiovasc Res, 2020,116(3): 645–657

    CAS  PubMed  Google Scholar 

  42. Zhu JR, Lu HD, Guo C, et al. Berberine attenuates ischemia-reperfusion injury through inhibiting HMGB1 release and NF-κB nuclear translocation. Acta Pharmacol Sin, 2018,39(11): 1706–1715

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Gerakis Y, Hetz C. Emerging roles of ER stress in the etiology and pathogenesis of Alzheimer’s disease. FEBS J, 2018,285(6):995–1011

    CAS  PubMed  Google Scholar 

  44. Ryter SW, Bhatia D, Choi ME, et al. Autophagy: A Lysosome-Dependent Process with Implications in Cellular Redox Homeostasis and Human Disease. Antioxid Redox Sign, 2019,30(1): 138–159

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-feng Yu.

Additional information

This work was supported by grants from the National Natural Science Foundation of China (No. 81360199), Science and Technology Department of Guizhou Province (Guizhou Specific Grant [2019] 4008), Science and Technology Plan Project of Guizhou Province (Basic Science and Technology Cooperation [2020]1Z060), Science and Technology Fund Project of Guizhou Health and Health Commission (No. gzwjkj2019-1-039), and Science and Technology Fund Project of Southwest Guizhou Autonomous Prefecture (2019-1-10).

Conflict of Interest Statement

All authors confirm that they have no conflicts of interest related to the preset study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, P., Ren, Zk., Lv, J. et al. Berberine Ameliorates Oxygen-glucose Deprivation/Reperfusion-induced Apoptosis by Inhibiting Endoplasmic Reticulum Stress and Autophagy in PC12 Cells. CURR MED SCI 40, 1047–1056 (2020). https://doi.org/10.1007/s11596-020-2286-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-020-2286-x

Key words

Navigation