Skip to main content
Log in

Shenqi Fuzheng Injection Ameliorates Radiation-induced Brain Injury

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Shenqi Fuzheng injection (SFI) has been confirmed to be able to alleviate brain injury in mice. This study examined the brain-protective effect of SFI on patients after cranial radiation. Lung cancer patients with brain metastasis were randomly assigned to two groups. The SFI group received cranial radiation in combination with SFI. The control group received cranial radiation alone. The changes in cognitive function were evaluated pre- and post-radiation against the Mini-Mental State Exam (MMSE), Montreal Cognitive Assessement (MoCA), Zung Self-Rating Depression Scale (SDS) and Zung Self-Rating Anxiety Scale (SAS). The changes in inflammatory factors, such as TGF-β1, TNF-α and IL-10, were also detected before, during and after radiation (15Gy/5F). The results showed that 6 months after cranial radiation, the total scores on the MMSE and MoCA scales of the patients decreased, especially memory ability. The control group experienced a more evident decline, the memory ability being the greatest. TGF-β1 and TNF-a increased shortly after radiation and decreased one month later, and the change was more conspicuous in SFI group than in control group. IL-10 increased after radiation and stayed at a high level one month later in both groups, the level being higher in the SFI group than in the control group. Our study indicated that cognitive functions, especially memory ability, were impaired after cranial radiation. SFI could alleviate radiation-induced brain injury by regulating inflammatory factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Khuntia D, Brown P, Li J, et al. Whole-brain radiotherapy in the management of brain metastasis. J Clin Oncol, 2006,24(8):1295–1304

    Article  CAS  PubMed  Google Scholar 

  2. Perry A, Schmidt RE. Cancer therapy-associated CNS neuropathology: an update and review of the literature. Acta Neuropathol, 2006,111(3):197–212

    Article  CAS  PubMed  Google Scholar 

  3. Ahles TA, Root JC, Ryan EL, et al. Cancer- and cancer treatment-associated cognitive change: an update on the state of the science. J Clin Oncol, 2012,30(30):3675–3686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Meyers CA, Smith JA, Bezjak A, et al. Neurocognitive function and progression in patients with brain metastases treated with whole-brain radiation and motexafin gadolinium: results of a randomized phase III trial. J Clin Oncol, 2004,22(1):157–165

    Article  CAS  PubMed  Google Scholar 

  5. DeSantis CE, Lin CC, Mariotto AB, et al. Cancer treatment and survivorship statistics, 2014. CA Cancer J Clin, 2014,64(4):252–271

    Article  PubMed  Google Scholar 

  6. Glass CK, Saijo K, Winner B, et al. Mechanisms underlying inflammation in neurodegeneration. Cell, 2010,140(6):918–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lee WH, Sonntag WE, Mitschelen M, et al. Irradiation induces regionally specific alterations in pro-inflammatory environments in rat brain. Int J Radiat Biol, 2010,86(2):132–144

    Article  PubMed  PubMed Central  Google Scholar 

  8. Conner KR, Payne VS, Forbes ME, et al. Effects of the AT1 receptor antagonist L-158,809 on microglia and neurogenesis after fractionated whole-brain irradiation. Radiat Res, 2010,173(1):49–61

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim S U, de Vellis J. Microglia in health and disease. J Neurosci Res, 2005,81(3):302–313

    Article  CAS  PubMed  Google Scholar 

  10. Kyrkanides S, Moore AH, Olschowka JA, et al. Cyclooxygenase-2 modulates brain inflammation-related gene expression in central nervous system radiation injury. Brain Res Mol Brain Res, 2002,104(2):159–169

    Article  CAS  PubMed  Google Scholar 

  11. Tong F, Zhang J, Liu L, et al. Corilagin Attenuates Radiation-Induced Brain Injury in Mice. Mol Neurobiol, 2016,53(10):6982–6996

    Article  CAS  PubMed  Google Scholar 

  12. Dong X, Luo M, Huang G, et al. Relationship between irradiation-induced neuro-inflammatory environments and impaired cognitive function in the developing brain of mice. Int J Radiat Biol, 2015,91(3):224–239

    Article  CAS  PubMed  Google Scholar 

  13. Monnier J, Zabel BA. Anti-asialo GM1 NK cell depleting antibody does not alter the development of bleomycin induced pulmonary fibrosis. PLoS One, 2014,9(6):e99350

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Zhou P, Streutker C, Borojevic R, et al. IL-10 modulates intestinal damage and epithelial cell apoptosis in T cellmediated enteropathy. Am J Physiol Gastrointest Liver Physiol, 2004,287(3):G599–604

    Article  CAS  PubMed  Google Scholar 

  15. Leask A, Abraham DJ. TGF-beta signaling and the fibrotic response. FASEB J, 2004,18(7):816–827

    Article  CAS  PubMed  Google Scholar 

  16. Greene-Schloesser D, Robbins ME. Radiation-induced cognitive impairment—from bench to bedside. Neuro Oncol, 2012, Suppl 4:iv37-44

    Article  PubMed  PubMed Central  Google Scholar 

  17. Rapp SR, Case LD, Peiffer A, et al. Donepezil for Irradiated Brain Tumor Survivors: A Phase III Randomized Placebo-Controlled Clinical Trial. J Clin Oncol, 2015,33(15):1653–1659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dong XR, Wang JN, Liu L, et al. Modulation of radiation-induced tumour necrosis factor-alpha and transforming growth factor beta1 expression in the lung tissue by Shengqi Fuzheng injection. Mol Med Rep, 2010,3(4):621–627

    CAS  PubMed  Google Scholar 

  19. Zhang J, Tong F, Cai Q, et al Shenqi fuzheng injection attenuates irradiation-induced brain injury in mice via inhibition of the NF-kappaB signaling pathway and microglial activation. Acta Pharmacol Sin, 2015,36(11):1288–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nasreddine ZS, Phillips NA, Bedirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc, 2005,53(4):695–699

    Article  PubMed  Google Scholar 

  21. McLennan SN, Mathias JL, Brennan LC, et al. Validity of the montreal cognitive assessment (MoCA) as a screening test for mild cognitive impairment (MCI) in a cardiovascular population. J Geriatr Psychiatry Neurol, 2011,24(1):33–38

    Article  CAS  PubMed  Google Scholar 

  22. Folstein MF, Folstein SE, McHugh PR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J Psychiatr Res, 1975,12(3):189–198

    Article  CAS  PubMed  Google Scholar 

  23. Zung WW. A rating instrument for anxiety disorders. Psychosomatics, 1971,12(6):371–379

    Article  CAS  PubMed  Google Scholar 

  24. Zung WW. A Self-Rating Depression Scale. Arch Gen Psychiatry, 1965,12:63–70

    Article  CAS  PubMed  Google Scholar 

  25. Makale MT, McDonald CR, Hattangadi-Gluth JA, et al. Mechanisms of radiotherapy-associated cognitive disability in patients with brain tumours. Nat Rev Neurol, 2017,13(1):52–64

    Article  CAS  PubMed  Google Scholar 

  26. Armstrong CL, Corn BW, Ruffer JE, et al. Radiotherapeutic effects on brain function: double dissociation of memory systems. Neuropsychiatry Neuropsychol Behav Neurol, 2000,13(2):101–111

    CAS  PubMed  Google Scholar 

  27. Lin NU, Wefel JS, Lee EQ, et al. Challenges relating to solid tumour brain metastases in clinical trials, part 2: neurocognitive, neurological, and quality-of-life outcomes. A report from the RANO group. Lancet Oncol, 2013,14(10):e407–416

    Article  PubMed  Google Scholar 

  28. Kureshi SA, Hofman FM, Schneider JH, et al. Cytokine expression in radiation-induced delayed cerebral injury. Neurosurgery, 1994,35(5):822–829; discussion 829–830

    Article  CAS  PubMed  Google Scholar 

  29. Ballesteros-Zebadua P, Chavarria A, Celis MA, et al. Radiation-induced neuroinflammation and radiation somnolence syndrome. CNS Neurol Disord Drug Targets, 2012,11(7):937–949

    Article  CAS  PubMed  Google Scholar 

  30. Daams M, Schuitema I, van Dijk BW, et al. Long-term effects of cranial irradiation and intrathecal chemotherapy in treatment of childhood leukemia: a MEG study of power spectrum and correlated cognitive dysfunction. BMC Neurol, 2012,12:84

    Article  PubMed  PubMed Central  Google Scholar 

  31. Greene-Schloesser D, Moore E, Robbins ME. Molecular pathways: radiation-induced cognitive impairment. Clin Cancer Res, 2013,19(9):2294–2300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ness KK, Armstrong GT, Kundu M, et al. Frailty in childhood cancer survivors. Cancer, 2015,121(10):1540–1547

    Article  PubMed  Google Scholar 

  33. Stoll G, Jander S. The role of microglia and macrophages in the pathophysiology of the CNS. Prog Neurobiol, 1999,58(3):233–247

    Article  CAS  PubMed  Google Scholar 

  34. Gebicke-Haerter PJ. Microglia in neurodegeneration: molecular aspects. Microsc Res Tech, 2001,54(1):47–58

    Article  CAS  PubMed  Google Scholar 

  35. Pocock JM, Liddle AC. Microglial signalling cascades in neurodegenerative disease. Prog Brain Res, 2001,132:555–565

    Article  CAS  PubMed  Google Scholar 

  36. Marshall SA, McClain JA, Kelso ML, et al. Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurodegeneration: The importance of microglia phenotype. Neurobiol Dis, 2013,54:239–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Boche D, Perry VH, Nicoll JA. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol, 2013,39(1):3–18

    Article  CAS  PubMed  Google Scholar 

  38. Najjar S, Pearlman DM, Alper K, et al. Neuroinflammation and psychiatric illness. J Neuroinflammation, 2013,10:43

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Reus GZ, Fries GR, Stertz L, et al. The role of inflammation and microglial activation in the pathophysiology of psychiatric disorders. Neuroscience, 2015,300:141–154

    Article  CAS  PubMed  Google Scholar 

  40. Rosenthal E, McCrory A, Talbert M, et al. Elevated expression of TGF-beta1 in head and neck cancer-associated fibroblasts. Mol Carcinog, 2004,40(2):116–121

    Article  CAS  PubMed  Google Scholar 

  41. Vujaskovic Z, Marks LB, Anscher MS. The physical parameters and molecular events associated with radiation-induced lung toxicity. Semin Radiat Oncol, 2000,10(4):296–307

    Article  CAS  PubMed  Google Scholar 

  42. Sanderson N, Factor V, Nagy P, et al. Hepatic expression of mature transforming growth factor beta 1 in transgenic mice results in multiple tissue lesions. Proc Natl Acad Sci USA, 1995,92(7):2572–2576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Eugenin EA, Branes MC, Berman JW, et al. TNF-alpha plus IFN-gamma induce connexin43 expression and formation of gap junctions between human monocytes/macrophages that enhance physiological responses. J Immunol, 2003,170(3):1320–1328

    Article  CAS  PubMed  Google Scholar 

  44. Marples B, McGee M, Callan S, et al. Cranial irradiation significantly reduces beta amyloid plaques in the brain and improves cognition in a murine model of Alzheimer’s Disease (AD). Radiother Oncol, 2016,118(3):579–580

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-rong Dong.

Additional information

Conflict of Interest Statement

The authors declare that there is no conflict of interest regarding the publication of this paper.

This work was supported by grants from National Nature Science Foundation of China (No. 81573090 and No. 81172595), Post-doctor Foundation of China (No. 20100480905) and Post-doctor Special Foundation of China (No. 201104440).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Lj., Zhang, Rg., Yu, Dd. et al. Shenqi Fuzheng Injection Ameliorates Radiation-induced Brain Injury. CURR MED SCI 39, 965–971 (2019). https://doi.org/10.1007/s11596-019-2129-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-019-2129-9

Key words

Navigation