Skip to main content
Log in

Low-temperature Plasma Promotes Fibroblast Proliferation in Wound Healing by ROS-activated NF-κB Signaling Pathway

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Low-temperature plasma (LTP) has shown great promise in wound healing, although the underlying mechanism remains poorly understood. In the present study, an argon atmospheric pressure plasma jet was employed to treat L929 murine fibroblasts cultured in vitro and skin wounds in BALB/c mice. The in vitro analysis revealed that treatment of fibroblasts with LTP for 15 s resulted in a significant increase in cell proliferation, secretion of epidermal growth factor (EGF) and transforming growth factor-βi (TGF-βi), production of intracellular reactive oxygen species (ROS), and the percentage of cells in S phase, protein expression of phosphorylated p65 (P-p65) and cyclinD1, but a noted decrease in the protein expression of inhibitor kappa B (IκB). The in vitro experiments demonstrated that 30-s LTP treatment enhanced the number of fibroblasts and the ability of collagen synthesis, while 50-s treatment led to the opposite outcomes. These results suggested that LTP treatment promotes the fibroblast proliferation in wound healing by inducing the generation of ROS, upregulating the expression of P-p65, downregulating the expression of IκB, and activating the NF-κB signaling pathway and consequently altering cell cycle progression (increased DNA synthesis in S phage).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hensel K, Kucerova K, Tarabova B, etal. Effects of air transient spark discharge and helium plasma jet on water, bacteria, cells, and biomolecules. Biointerphases, 2015,10(2): 029515

    Article  PubMed  CAS  Google Scholar 

  2. Daeschlein G, Scholz S, Ahmed R, etal. Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma. J Hosp Infect, 2012, 81(3): 177–183

    Article  PubMed  CAS  Google Scholar 

  3. Klâmpfl TG, Isbary G, Shimizu T, etal. Cold atmospheric air plasma sterilization against spores and other microorganisms of clinical interest. Appl Environ Microbiol, 2012, 78(15): 5077–5082

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Zhong SY, Dong YY, Liu DX, etal. Surface air plasma-induced cell death and cytokine release of human keratinocytes in the context of psoriasis. Br J Dermatol, 2016, 174(3): 542–552

    Article  PubMed  CAS  Google Scholar 

  5. Graves DB. Low temperature plasma biomedicine: A tutorial review. Phys Plasmas, 2014,21(8): 080901

    Article  CAS  Google Scholar 

  6. Brehmer F, Haenssle HA, Daeschlein G, etal. Alleviation of chronic venous leg ulcers with a hand-held dielectric barrier discharge plasma generator (PlasmaDerm(R) VU-2010): results of a monocentric, two-armed, open, prospective, randomized and controlled trial (NCT01415622). J Eur Acad Dermatol Venereol, 2015, 29(1): 148–155

    Article  PubMed  CAS  Google Scholar 

  7. Fridman G, Peddinghaus M, Ayan H, etal. Blood coagulation and living tissue sterilization by floating-electrode dielectric barrier discharge in air. Plasma Chem Plasma Process, 2007, 27(1): 113–114

    Article  CAS  Google Scholar 

  8. Aijunan KP, Friedman G, Fridman A, etal. Non-thermal dielectric barrier discharge plasma induces angiogenesis through reactive oxygen species. J R Soc Interface, 2012, 9(66): 147–157

    Article  CAS  Google Scholar 

  9. Kisch T, Schleusser S, Helmke A, etal. The repetitive use of non-thermal dielectric barrier discharge plasma boosts cutaneous microcirculatory effects. MicrovascRes, 2016, 106:8–13

    Article  Google Scholar 

  10. Xu GM, Shi XM, Cai JF, etal. Dual effects of atmosphericpressureplasmajetonskinwoundhealing of mice. Wound Repair Regen, 2015, 23(6): 878–884

    Article  PubMed  Google Scholar 

  11. Shi XM, Zhang GJ, Yuan YK, etal. Effects of lowtemperature plasma on the activity and function of human lymphocytes. Plasma Process Polym, 2008, 5(5): 482–488

    Article  CAS  Google Scholar 

  12. Kalghatgi SU, Friedman G, Fridman A, etal. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann Biomed Eng, 2010, 38(3): 748–757

    Article  PubMed  Google Scholar 

  13. Bekeschus S, Masur K, Kolata J, etal. Human mononuclear cell survival and proliferation is modulated by cold atmospheric plasma jet. Plasma Process Polym, 2013, 10(8): 706–713

    Article  CAS  Google Scholar 

  14. Partecke LI, Evert K, Haugk J, etal. Tissue tolerable plasma (TTP) induces apoptosis in pancreatic cancer cells in vitro and in vivo. BMC cancer, 2012,12:473

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Han G, Nguyen LN, Macheria C, etal. Nitric oxide-releasing nanoparticles accelerate wound healing by promoting fibroblast migration and collagen deposition. Am J Pathol, 2012, 180(4): 1465–1473

    Article  PubMed  CAS  Google Scholar 

  16. Shi XM, Chang ZS, Wu XL, etal. Inactivation effect of argon atmospheric pressure low-temperature plasma jet on murine melanoma cells. Plasma Process Polym, 2013, 10(9): 808–816

    Article  CAS  Google Scholar 

  17. Han ZM, Chen DY, Li JS, etal. Flow cytometric cell-cycle analysis of cultured fibroblasts from the giant panda, Ailuropoda melanoleuca L. Cell Biol Int, 2003, 27(4): 349–353

    Article  PubMed  Google Scholar 

  18. Lyle S, Christofidou-Solomidou M, Liu YP, etal. Human hair follicle bulge cells are biochemically distinct and possess an epithelial stem cell phenotype. J Investig Dermatol Symp Proc, 1999, 4(3): 296–301

    Article  PubMed  CAS  Google Scholar 

  19. Zhao S, Xiong Z, Mao X, etal. Combined effect of N-acetylcysteine (NAC) and plasma on proliferation of HepG2 cells. IEEE Trans Plasma Sei, 2012, 40(9): 2179–2184

    Article  CAS  Google Scholar 

  20. Bruggeman P, Schram DC. On OH production in water containing atmospheric pressure plasmas. Plasma Sour Sei Technol, 2010,19(4): 045025

    Article  CAS  Google Scholar 

  21. Chang ZS, Shi XM, Zhang GJ, etal. Effects of atmospheric DBCD plasma on three kinds of typical microorganisms. IEEE Trans Plasma Sei, 2013, 41(7): 1703–1708

    Article  CAS  Google Scholar 

  22. Gebicki S, Gebicki JM. Formation of peroxides in amino acids and proteins exposed to oxygen free radicals. Biochem J, 1993, 289:743–749

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Sensenig R, Kalghatgi S, Cerchar E, etal. Non-thermal plasma induces apoptosis in melanoma cells via production of intracellular reactive oxygen species. Ann Biomed Eng, 2013,41(3): 656

    Article  PubMed Central  Google Scholar 

  24. Kong MG, Liu DX. Researches on the interaction between gas plasmas and aqueous solutions: Significance, challenges and new progresses. High Volt Eng (Chinese), 2014, 40(10): 2956–2965

    CAS  Google Scholar 

  25. Xu DH, Liu DX, Wang BQ, etal. In situ OH generation from O2 and H2O2 plays a critical role in plasma-induced cell death. PLoS One, 2015,10(6): e0128205

    Google Scholar 

  26. Ding MX, eds. Cell Biology. Beijing: Higher Education Press, 2002,78–79.

    Google Scholar 

  27. Izutani Y, Yogosawa S, Sowa Y, etal. Brassinin induces Gi phase arrest through increase of p21 and p27 by inhibition of the phosphatidylinositol 3-kinase signaling pathway in human colon cancer cells. Int J Oncol, 2012, 40(3): 816–824

    PubMed  CAS  Google Scholar 

  28. Qi S, Xin Y, Guo Y, etal. Ampelopsin reduces endotoxic inflammation via repressing ROS-mediated activation of PI3K/Akt/NF-icB signaling pathways. Int Immunopharmacol, 2012,12(1): 278–287

    Article  PubMed  CAS  Google Scholar 

  29. Buss H, Handschick K, Jurrmann N, etal. Cyclin-dependent kinase 6 phosphorylates NF-kappa B P65 at serine 536 and contributes to the regulation of inflammatory gene expression. PLoS One, 2012,7(12): e51847

    Google Scholar 

  30. Ren M, Zhong X, Ma CY, etal. Insulin-like growth factor-1 promotes cell cycle progression via upregulation of cyclin D1 expression through the phosphatidylinositol 3-kinase/nuclear factor-kappaB signaling pathway in FRTL thyroid cells. Acta Pharmacol Sin, 2009, 30(1): 113–119

    Article  PubMed  CAS  Google Scholar 

  31. Kong F, Tong R, Jia L, etal. OVCA1 inhibits the proliferation of epithelial ovarian cancer cells by decreasing cyclin D1 and increasing pi6. Mol Cell Biochem, 2011,354(l-2): 199–205

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Chen Huang at the School of Medicine, Xi'an Jiaotong University, for his excellent technical help. The authors are also grateful to Y. X. Li, Z. Y. Peng and Z. H. Zhang for their contribution to data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guan-jun Zhang  (张冠军).

Additional information

"This project was supported by the National Natural Science Foundation of China (Nos. 81372076, 51677146, 51521065 and 51307133), and the Sci-Tech Project of Shaanxi Province (No. 2010K16-04).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Xm., Xu, Gm., Zhang, Gj. et al. Low-temperature Plasma Promotes Fibroblast Proliferation in Wound Healing by ROS-activated NF-κB Signaling Pathway. CURR MED SCI 38, 107–114 (2018). https://doi.org/10.1007/s11596-018-1853-x

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-018-1853-x

Key words

Navigation