Skip to main content
Log in

Summary

To investigate the in vitro and in vivo proangiogenic effects of brain-derived neurotrophic factor (BDNF), human umbilical vein endothelial cells (HUVECs) were isolated and cultured in primary culture. The effect of BDNF on the proliferation of HUVECs was examined by MTT assay. The effects of BDNF on HUVEC migration and tube formation were studied by modified Boyden chamber assay and tube formation assay, respectively. Matrigel plug assay and chorioallantoic membrane assay were used to evaluate the effects of BDNF on angiogenesis in vivo. Our results showed that BDNF substantially stimulated the migration and tube formation of HUVECs in vitro, although it did not induce HUVEC proliferation. BDNF also induced angiogenesis both in matrigel plug of mouse model and in chick chorioallantoic membrane. In conclusion, BDNF can promote angiogenesis both in vitro and in vivo, and may be a proangiogenic factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lin YL. The research advance of brain derived neurotrophic factor. Lett Biotechnol, 2003,14(3):241–244

    Google Scholar 

  2. Seifer DB, Feng B, Shelden RM, et al. Brain derived neurotrophic factor: a novel human ovarian follicular protein. J Clin Endocrinol Metab, 2002,87(2):655–659

    Article  PubMed  CAS  Google Scholar 

  3. Labouyrie E, Dubus P, Groppi A, et al. Expression of neurotrophins and their receptors in human bone marrow. Am J Pathol, 1999,154(2):405–415

    PubMed  CAS  Google Scholar 

  4. Ricci A, Greco S, Amenta F, et al. Neurotrophins and neurotrophin receptors in human pulmonary arteries. J Vasc Res, 2000,37(5):355–363

    Article  PubMed  CAS  Google Scholar 

  5. Hu Y, Sun CY, Wang YD, et al. Study on the high expression of brain-derived neurotrophic factor in multiple myeloma patients and its possible mechanism. Zhongguo Shi Yan Xue Ye Xue Za Zhi (Chinese), 2005,13(1):104–109.

    CAS  Google Scholar 

  6. Kallmann BA, Wagner S, Hummel V, et al. Characteristic gene expression profile of primary human cerebral endothelial cells. FASEB J, 2002,16(6):589–591

    PubMed  CAS  Google Scholar 

  7. Nakahashi T, Fujimura H, Altar CA, et al. Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett, 2000,470(2):113–117

    Article  PubMed  CAS  Google Scholar 

  8. Nemoto K, Fukamachi K, Nemoto F, et al. Gene expression of neurotrophins and their receptors in cultured rat vascular smooth muscle cells. Biochem Biophys Res Commun, 1998,245(1):284–288

    Article  PubMed  CAS  Google Scholar 

  9. Jaffe EA, Nachman RL, Becker CG, et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest, 1973,52(11):2745–2756

    Article  PubMed  CAS  Google Scholar 

  10. Ribatti D, Gualandris A, Bastaki M, et al. New model for the study of angiogenesis in the chick embryo chorioallantoic membrane. J Vasc Res, 1997,34(6):455–463

    Article  PubMed  CAS  Google Scholar 

  11. Bussolino F, Mantovani A, Persico G. Molecular mechanisms of blood vessel formation. Trends Biochem Sci, 1997,22(7):251–256

    Article  PubMed  CAS  Google Scholar 

  12. Carmeliet P. Mechanisms of angiogenesis and arteriogenesis. Nat Med, 2000,6(4):389–395

    Article  PubMed  CAS  Google Scholar 

  13. Müller D, Davidoff MS, Bargheer O, et al. The expression of neurotrophins and their receptors in the prenatal and adult human testis: evidence for functions in Leydig cells. Histochem Cell Biol, 2006,126(2):199–211

    Article  PubMed  Google Scholar 

  14. Donovan MJ, Miranda RC, Kraemer R, et al. Neurotrophin and neurotrophin receptors in vascular smooth muscle cells. Regulation of expression in response to injury. Am J Pathol, 1995,147(2):309–324

    PubMed  CAS  Google Scholar 

  15. Donovan MJ, Lin MI, Wiegn P, et al. Brain derived neurotrophic factor is an endothelial cell survival factor required for intramyocardial vessel stabilization. Development, 2000,127(21):4531–4540

    PubMed  CAS  Google Scholar 

  16. Kermani P, Rafii D, Jin DK, et al. Neurotrophins promote revascularization by local recruitment of TrkB+ endothelial cells and systemic mobilization of hematopoietic progenitors. J Clin Invest, 2005,115(3):653–663

    PubMed  CAS  Google Scholar 

  17. Vacca A, Ribatti D, Presta M, et al. Bone marrow neovascularization, plasma cell angiogenic potential, and matrix metalloproteinase-2 secretion parallel progression of human multiple myeloma. Blood, 1999,93(9):3064–3073

    PubMed  CAS  Google Scholar 

  18. Munshi NC, Wilson C. Increased bone marrow microvessel density in newly diagnosed multiple myeloma carries a poor prognosis. Semi Oncol, 2001,28(6):565–569

    Article  CAS  Google Scholar 

  19. Yang RC, Han ZC. Angiogenesis in hematologic malignancies and its clinical implications. Intern J Hematol, 2002,75(3):246–256

    Article  Google Scholar 

  20. Bhatti SS, Kumar L, Dinda AK, et al. Prognostic value of bone marrow angiogenesis in multiple myeloma: use of light microscopy as well as computerized image analyzer in the assessment of microvessel density and total vascular area in multiple myeloma and its correlation with various clinical, histological, and laboratory parameters. Am J Hematol, 2006,81(9):649–656

    Article  PubMed  Google Scholar 

  21. Klein B, Zhang XG, Lu ZY, et al. Interleukin-6 in human multiple myeloma. Blood, 1995,85(4):863–872

    PubMed  CAS  Google Scholar 

  22. Kumar S, Witzig TE, Timm M, et al. Expression of VEGF and its receptors by myeloma cells. Leukemia, 2003, 17(10):2025–2031

    Article  PubMed  CAS  Google Scholar 

  23. Tai YT, Podar K, Catley L, et al. Insulin-like growth factor-1 induces adhesion and migration in human multiple myeloma cells via activation of beta1-integrin and phosphatidylinositol 3′-kinase/AKT signaling. Cancer Res, 2003,63(18):5850–5858.

    PubMed  CAS  Google Scholar 

  24. Derksen PW, de Gorter DJ, Meijer HP, et al. The hepatocyte growth factor/Met pathway controls proliferation and apoptosis in multiple myeloma. Leukemia, 2003,17(4):764–774

    Article  PubMed  CAS  Google Scholar 

  25. Smolej L, Andrýs C, Maisnar V, et al. Plasma concentrations of vascular endothelial growth factor and basic fibroblast growth factor in lymphoproliferative disorders. Acta Medica (Hradec Kralove), 2005,48(1):57–58

    Google Scholar 

  26. Kowalski PJ, Paulino AF. Perineural invasion in adenoid cystic carcinoma: Its causation/promotion by brain-derived neurotrophic factor. Hum Pathol, 2002,33(9): 933–936

    Article  PubMed  CAS  Google Scholar 

  27. Satoh F, Mimata H, Nomura T, et al. Autocrine expression of neurotrophins and their receptors in prostate cancer. Int J Urol, 2001,8(7):S28–S34

    Article  PubMed  CAS  Google Scholar 

  28. Feng X, Jiang H, Baik JC, et al. BDNF dependence in neuroblastoma. J Neurosci Res, 2001,64(4):355–363

    Article  PubMed  CAS  Google Scholar 

  29. Hu Y, Sun CY, Wang HF, et al. Brain-derived neurotrophic factor promotes growth and migration of multiple myeloma (MM) cells. Cancer Genet Cytogenet, 2006,169(1):12–20

    Article  PubMed  CAS  Google Scholar 

  30. Sakamoto Y, Kitajima Y, Edakuni G, et al. Expression of Trk tyrosine kinase receptor is a biologic marker for cell proliferation and perineural invasion of human pancreatic ductal adenocarcinoma. Oncol Rep, 2001,8(3):477–484

    PubMed  CAS  Google Scholar 

  31. Jaboin J, Kim CJ, Kaplan DR, et al. Brain-derived neurotrophic factor activation of TrκB protects neuroblastoma cells from chemotherapy-induced apoptosis via phosphatidylinositol 3′-kinase pathway. Cancer Res, 2002, 62(22):6756–6763

    PubMed  CAS  Google Scholar 

  32. Jaboin J, Hong A, Kim CJ, et al. Cisplatin-induced cytotoxicity is blocked by brain-derived neurotrophic factor activation of TrkB signal transduction path in neuroblastoma. Cancer Lett, 2003,193(1):109–114

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The project was supported by grants from the National Natural Sciences Foundation of China (No. 30670896), Youth Talent Foundation of Hubei Province (No. 2003 ABB017) and Scientific Research Foundation of Health Bureau of Hubei Province (No. JX3B06).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Hu, Y., Chu, Z. et al. The effect of brain-derived neurotrophic factor on angiogenesis. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 29, 139–143 (2009). https://doi.org/10.1007/s11596-009-0201-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-009-0201-6

Key words

Navigation