Skip to main content
Log in

Tunable Emission and Energy Transfer of the Novel KY1−x(MoO4)2−y(WO4)y:xLn3+ (Ln3+ = Dy3+, Eu3+, and Tm3+) Single-phase White Luminescence Phosphor for White LEDs

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The phosphors of KY1−x(MoO4)2−y(WO4)y:xLn3+ (Ln3+ = Tm3+, Dy3+, Eu3+) were synthesized by using a sol-gel method. Then, the crystal structure, luminescence properties, energy transfer, and white emission of the prepared materials were researched. The molar ratio of the anion group on the photoluminescence(PL) emission and excitation intensity were investigated, revealing that the optimum intensity could be obtained by using = 3:1. The optimal Dy3+ doping concentration of KY(MoO4)1.5(WO4)0.5 was obtained. In addition, the color-tunable emissions of Dy3+/Eu3+-codoped KY(MoO4)1.5(WO4)0.5 phosphors were observed because of the effective energy transfer (ET) from Dy3+ to Eu3+ ions. Finally, by doping appropriate concentrations of Tm3+, Dy3+, and Eu3+ and different concentrations of (WO4)2−, white light emitting phosphors KY0.92(WO4)2:0.01Tm3+.0.06Dy3+, 0.01Eu3+ with excellent color-rending properties were obtained. The chromaticity coordinate was calculated as (x = 0.3238, y = 0.3173), closing to the artificial daylight (D65, x = 0.313, y = 0.329) illuminant, and which indicates the potential application of near ultraviolet White light-emitting diodes (WLEDs).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bandi VR, Grandhe BK, Woo H-J, et al. Luminescence and Energy Transfer of Eu3+ or/and Dy3+ Co-doped in Sr3AlO4F Phosphors with NUV Excitation for WLEDs[J]. Journal of Alloys and Compounds, 2012, 538: 85–90

    Article  CAS  Google Scholar 

  2. Du P, Luo LH, Yu JS. Low-temperature Thermometry Based on Upconversion Emission of Ho/Yb-codoped Ba0.77Ca0.23TiO3 Ceramics[J]. Journal of Alloys and Compounds, 2015, 632: 73–77

    Article  CAS  Google Scholar 

  3. Yue C, Wang WR, Wang QP, et al. Synthesis and Luminescence Properties of Ba2Gd2Si4O13:Ce3+ Phosphor for UV Light-emitting Diodes[J]. Journal of Alloys and Compounds, 2016, 683: 575–578

    Article  CAS  Google Scholar 

  4. Wang Q-F, Liu Y, Wang Y, et al. Considerable Photoluminescence Enhancement of LiEu(MoO4)2 Red Phosphors via Bi and Si Doping for White LEDs[J]. Journal of Alloys and Compounds, 2015, 625: 355–361

    Article  CAS  Google Scholar 

  5. Chen DQ, Zhou Y, Xu W, et al. Enhanced Luminescence of Mn4+:Y3A-Red Phosphor via Impurity Doping[J]. Journal of Materials Chemistry, C, 2016, 4: 1 704–1 712

    Article  CAS  Google Scholar 

  6. Jia YL, Pang R, Li HF, et al. Single-phased White-light-emitting Ca4(PO4)2O:Ce3+, Eu2+ Phosphors Based on Energy Transfer[J]. Dalton Transactions, 2015, 44: 11 399–11 407

    Article  CAS  Google Scholar 

  7. Wang K, Liu Y, Tan GQ, et al. Structure, Luminescence and Energy Transfer of LiLa(MoO4)2:Dy3+, Eu3+ Crystal[J]. Journal of Luminescence, 2018, 197: 354–359

    Article  CAS  Google Scholar 

  8. Shang MM, Li CX, Lin J. How to Produce White Light in a Single-phase Host[J]?. Chemical Society Reviews, 2014, 43: 1 372–1 386

    Article  CAS  Google Scholar 

  9. Zhao L, Wang DY, Chen CX, et al. Synthesis and Photoluminescence Properties of Novel CaB6O10:RE3+ (RE = Ce, Tb, Dy, Eu) Phosphors under Ultraviolet Excitation[J]. Materials Research Bulletin, 2015, 70: 817–821

    Article  CAS  Google Scholar 

  10. Liu YL, Xiong HL, Zhang NN, et al. Microwave Synthesis and Luminescent Properties of YVO4:Ln3+ (Ln = Eu, Dy and Sm) Phosphors with Different Morphologies[J]. Journal of Alloys and Compounds, 2015, 653: 126–134

    Article  CAS  Google Scholar 

  11. Thakur H, Singh RK, Gathania AK. Synthesis and Optical Properties of GdVO4: Eu3+ Phosphor[J]. Materials Research Express, 2021, 8: 026201

    Article  CAS  Google Scholar 

  12. Wang HY, Zhou X, Yan JH, et al. (Ln3+ = Eu3+/Dy3+/Dy3+, Eu3+) Doped NaGd(MoO4)2 Phosphors with Uniform Morphologies: Hydrothermal Synthesis, Luminescent Properties, Energy Transfer and Color Tunable Emission[J]. Journal of Luminescence, 2018, 195: 170–175

    Article  Google Scholar 

  13. Zuo HQ, Liu Y, Li JY, et al. Synthesis and Luminescence Properties of Eu3+-Doped KLa(MoO4)2 Red-emitting Phosphor[J]. Superlattices and Microstructures, 2015, 85: 672–679

    Article  CAS  Google Scholar 

  14. Du P, Yu JS. Energy Transfer Mechanism and Color Controllable Luminescence in Dy3+/Eu3+-codoped NaLa(MoO4)2 Phosphors[J]. Journal of Alloys and Compounds, 2015, 653: 468–473

    Article  CAS  Google Scholar 

  15. Xu ZH, Kang XJ, Li CX, et al. Ln3+ (Ln = Eu, Dy, Sm, and Er) Ion-doped YVO4 Nano/microcrystals with Multiform Morphologies: Hydrothermal Synthesis, Growing Mechanism, and Luminescent Properties[J]. Inorganic Chemistry, 2010, 49: 6 706–6 715

    Article  CAS  Google Scholar 

  16. Xie W, Liu GX, Dong XT, et al. Doping Eu3+/Sm3+ into CaWO4:Tm3+, Dy3+ Phosphors and Their Luminescence Properties, Tunable Color and Energy Transfer[J]. RSC Advances, 2016, 6: 26 239–26 246

    Article  CAS  Google Scholar 

  17. Geng DL, Shang MM, Yang DM, et al. Tunable Luminescence and Energy Transfer Properties in KCaGd(PO4)2:Ln3+/Mn2+ (Ln = Tb, Dy, Eu, Tm; Ce, Tb/Dy) Phosphors with High Quantum Efficiencies[J]. Journal of Materials Chemistry, 2012, 22: 23 789–23 798

    Article  CAS  Google Scholar 

  18. Su LM, Fan X, Cai GM, et al. Tunable Luminescence Properties and Energy Transfer of Tm3+, Dy3+, and Eu3+ Co-activated InNbO4 Phosphors for Warm-white-lighting[J]. Ceramics International, 2016, 42: 15 994–16 006

    Article  CAS  Google Scholar 

  19. Li Z, Wu KY, Wang YN, et al. Synthesis and Luminescence Properties of Green-emitting Phosphor CaSc2O4:Ce3+[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2022, 37: 591–594

    Article  CAS  Google Scholar 

  20. Huang JH, Chen N, Wang XJ, et al. Photoluminescence and Ce3+→T-b3+→Eu3++ Energy Transfer Processes of the Ce3+/Tb3+/Eu3+-doped β-NaYF4 Phosphors with Broadened Excitation Spectrum[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2021, 36: 33–43

    Article  CAS  Google Scholar 

  21. Qin D, Tang WJ. Efficient Energy Transfer and Tunable Emission in NaLa(MoO4)(WO4): Tb3+/Eu3+ Phosphors[J]. Ceramics International, 2016, 42: 1 538–1 544

    Article  Google Scholar 

  22. Bain FM, Lagatsky AA, Thomson RR, et al. Ultrafast Laser Inscribed Yb:KGd(WO4)2 and Yb:KY(WO4)2 Channel Waveguide Lasers[J]. Optics Express, 2009, 17: 22 417–22 422

    Article  CAS  Google Scholar 

  23. Wan J, Cheng LH, Sun JS, et al. Energy Transfer and Colorimetric Properties of Eu3+/Dy3+ Co-doped Gd2(MoO4)3 Phosphors[J]. Journal of Alloys and Compounds, 2010, 496: 331–334

    Article  CAS  Google Scholar 

  24. Liu Y, Wang Y, Wang LP, et al. General Synthesis of LiLn(MO4)2:Eu3+ (Ln = La, Eu, Gd, Y; M = W, Mo) Nanophosphors for Near UV-type LEDs[J]. RSC Advances, 2014, 4: 4 754–4 762

    Article  CAS  Google Scholar 

  25. Deng YM, Yi SP, Huang J, et al. White Light Emission and Energy Transfer in Dy3+/Eu3+ Co-doped BaLa2WO7 Phosphors[J]. Materials Research Bulletin, 2014, 57: 85–90

    Article  CAS  Google Scholar 

  26. Li YT, Liu XH. Photoluminescence Properties and Energy Transfer of KY1−xLnx(MoO4)2 (Ln = Sm3+, Eu3+) Red Phosphors[J]. Journal of Luminescence, 2014, 151: 52–56

    Article  CAS  Google Scholar 

  27. Qin D, Tang WJ. Energy Transfer and Multicolor Emission in Single-phase Na5Ln(WO4)4−z(MoO4)z:Tb3+, Eu3+ (Ln = La, Y, Gd) Phosphors[J]. RSC Advances, 2016, 6: 45 376–45 385

    Article  CAS  Google Scholar 

  28. Li LL, Liu YL, Li RQ, et al. Tunable Luminescence Properties of the Novel Tm3+- and Dy3+-codoped LiLa(MoO4)x(WO4)2−x Phosphors for White Light-emitting Diodes[J]. RSC Advances, 2015, 5: 7 049–7 057

    Article  CAS  Google Scholar 

  29. Yue C, Liu SS, Zhu DC. Tunable Emission, Energy Transfer and Thermal Stability of a Single-phased Sr(1-x-y)MgP2O7:xCe3+, yDy3+ Phosphor for Ultraviolet Converted White LEDs[J]. Journal of Alloys and Compounds, 2019, 783: 19–27

    Article  CAS  Google Scholar 

  30. Jeon YI, Bharat LK, Yu JS. Synthesis and Luminescence Properties of Eu3+/Dy3+ Ions Co-doped Ca2La8(GeO4)6O2 Phosphors for White-light Applications[J]. Journal of Alloys and Compounds, 2015, 620: 263–268

    Article  CAS  Google Scholar 

  31. Zhou LJ, Wang WX, Yu SC, et al. Single-phase LiY(MoO4)2−x(WO4)x: Dy3+, Eu3+ Phosphors with White Luminescence for White LEDs[J]. Materials Research Bulletin, 2016, 84: 429–436

    Article  CAS  Google Scholar 

  32. Min X, Huang ZH, Fang MH, et al. Energy Transfer from Sm3+ to Eu3+ in Red-emitting Phosphor LaMgAl11O19:Sm3+, Eu3+ for Solar Cells and Near-ultraviolet White Light-emitting Diodes[J]. Inorganic Chemistry, 2014, 53: 6 060–6 065

    Article  CAS  Google Scholar 

  33. Hou L, Cui SB, Fu ZL, et al. Jeong, Facile Template Free Synthesis of KLa(MoO4)2:Eu3+, Tb3+ Microspheres and Their Multicolor Tunable Luminescence[J]. Dalton Trans, 2014, 43: 5 382–5 392

    Article  CAS  Google Scholar 

  34. Li YP, Zhang JH, Zhang X, et al. Luminescent Properties in Relation to Controllable Phase and Morphology of LuBO3:Eu3+ Nano/Microcrystals Synthesized by Hydrothermal Approach[J]. Chemistry of Materials, 2009, 21: 468–475

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weigang Huang  (黄维刚).

Ethics declarations

All authors declare that there are no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., He, B. & Huang, W. Tunable Emission and Energy Transfer of the Novel KY1−x(MoO4)2−y(WO4)y:xLn3+ (Ln3+ = Dy3+, Eu3+, and Tm3+) Single-phase White Luminescence Phosphor for White LEDs. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 38, 1278–1286 (2023). https://doi.org/10.1007/s11595-023-2820-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-023-2820-3

Key words

Navigation