Skip to main content

Advertisement

Log in

Synthesis of 1,1,3,3,5,5-hexamethyl-1,5-bis[(3-ethyl-3-methoxyoxetane)propyl]trisiloxane and Research on Its UV-curing Performance

  • Organic Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A compound, 3-ethyl-3-hydroxymethyloxetane (EHO), was synthesized with diethyl carbonate and trihydroxypropane as raw materials, 3-ethyl-3-allylmethoxy oxetane (EAMO) was synthesized with EHO and allyl bromide, and 1,1,3,3,5,5-hexamethyl-1,5-bis[(3-ethyl-3-methoxyoxetane)propyl]trisiloxane (HMBEMOPTS) was synthesized with EAMO and 1,1,3,3,5,5-hexamethyltrisiloxane (HMTS). HMBEMOPTS is a novel UV-curable oligomer. The test of photo-DSC shows the photosensitivity of HMBEMOPTS is better than the ordinary oxetane, 3-ethyl-3-[(3-ethyloxetan-3-yl)methoxymethyl]oxetane. HMBEMOPTS was mixed with bisphenol A type epoxy resin E-51 to prepare a cationic UV-curable system, and triarylsulfonium hexafluoroantimonate (UV-6976) was used as a cationic photoinitiator. The mechanical tests of coating films prove that when the mass fraction of HMBEMOPTS is 50%, the mechanical properties of the curing system are the best. The impact strength of the UV-curable films is measured to be 40 kg-cm and the flexibility is 2 mm; the tensile strength and flexural strength of the prepared specimens are 20.74 MPa and 13.43 MPa, respectively. The experimental results show that HMBEMOPTS can effectively improve photosensitivity and flexibility of the photosensitive resin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gao M, Li L, Song Y. Inkjet Printing Wearable Electronic Devices[J]. J. Mater. Chem. C. Mater., 2017, 5(12): 2 971–2 993

    Article  CAS  Google Scholar 

  2. Wang J, Song C, Zhong Z, et al. In Situ Patterning of Microgrooves via Inkjet Etching for a Solution-processed OLED Display[J]. J. Mater. Chem. C. Mater., 2017, 5(20): 5 005–5 009

    Article  CAS  Google Scholar 

  3. Wei D, Liao B, Yong Q, et al. Castor Oil Based Hyperbranched Urethane Acrylates and Their Performance as UV-curable Coatings[J]. J. Macromol. Sci., Part A: Pure Appl. Chem., 2018, 55(5): 422–432

    Article  CAS  Google Scholar 

  4. Cheng C, Zhang X, Huang Q, et al. Preparation of Fully Bio-based UV-cured Non-isocyanate Polyurethanes from Ricinoleic Acid[J]. J. Macromol. Sci., Part A: Pure Appl. Chem., 2015, 52(6): 485–491

    Article  CAS  Google Scholar 

  5. Liu R, Zhang X, Zhu J, et al. UV-curable Coatings from Multiarmed Cardanol-based Acrylate Oligomers[J]. ACS. Sustain. Chem. Eng., 2015, 3(7): 1 313–1 320

    Article  CAS  Google Scholar 

  6. Chittavanich P, Miller K, Soucek MD. A Photo-curing Study of a Pigmented UV-curable Alkyd[J]. Prog. Org. Coat., 2012, 73(4): 392–400

    Article  CAS  Google Scholar 

  7. Qi Y, Li L, Fang Z, et al. Effects of Small Molecular Weight Silicon-containing Acrylate on Kinetics, Morphologies, and Properties of Free-radical/Cationic Hybrid UV-cured Coatings[J]. J. Appl. Polym. Sci., 2014, 131(16): 40 655

    Google Scholar 

  8. Boton L, Puguan JM, Latif M, et al. Synthesis and Properties of Quick-drying UV-curable Hyperbranched Waterborne Polyurethane Coating[J]. Prog. Org. Coat., 2018, 125: 201–206

    Article  CAS  Google Scholar 

  9. Shen Z, Wu Y, Qiu S, et al. UV-thermal Dual-cured Polymers with Degradable and Anti-bacterial Function[J]. Prog. Org. Coat., 2020, 148: 105 783

    Article  CAS  Google Scholar 

  10. Decker C. Kinetic Study and New Applications of UV Radiation Curing[J]. Macromol. Rapid. Commun., 2003, 23(18): 1 067–1 093

    Article  Google Scholar 

  11. Li S, He Y, Nie J. Photopolymerization of Hybrid Monomer 3-(1-propenyl)oxypropyl Acrylate[J]. J. Photochem. Photobiol. A. Chem., 2007, 191(1): 25–31

    Article  CAS  Google Scholar 

  12. Narewska J, Strzelczyk R, Podsiadly R. Fluoflavin Dyes as Electron Transfer Photosensitizers for Onium Salt Induced Cationic Photopolymerization[J]. J. Photochem. Photobiol. A. Chem., 2010, 212(1): 68–74

    Article  CAS  Google Scholar 

  13. Park S, Kilgallon LJ, Yang Z, et al. Molecular Origin of the Induction Period in Photoinitiated Cationic Polymerization of Epoxies and Oxetanes[J]. Macromolecules, 2019, 52(3): 1 158–1 165

    Article  Google Scholar 

  14. Al Mousawi A, Poriel C, Dumur F, et al. Zinc Tetraphenylporphyrin as High Performance Visible Light Photoinitiator of Cationic Photosensitive Resins for LED Projector 3D Printing Applications[J]. Macromolecules, 2017, 50(3): 746–753

    Article  CAS  Google Scholar 

  15. Ligon SC, Liska R, Stampfl J, et al. Polymers for 3D Printing and Customized Additive Manufacturing[J]. Chem. Rev., 2017, 117(15): 10 212–10 290

    Article  CAS  Google Scholar 

  16. Huang B, Han L, Wu B, et al. Application of Bis[2-(3,4-epoxycyclohexyl)ethyl]octamethyltetrasiloxane in the Preparation of a Photosensitive Resin for Stereolithography 3D Printing[J]. J. Wuhan Univ. Technol. — Mater Sci. Ed., 2019, 34(6): 1 470–1 478

    Article  CAS  Google Scholar 

  17. Sun F, Jiang SL, Liu J. Study on Cationic Photopolymerization Reaction of Epoxy Polysiloxane[J]. Nucl. Instrum. Methods Phys. Res. B., 2007, 264(2): 318–322

    Article  CAS  Google Scholar 

  18. Jang M, Crivello JV. Synthesis and Cationic Photopolymerization of Epoxy-functional Siloxane Monomers and Oligomers[J]. J. Polym. Sci. A. Polym. Chem., 2003, 41(19): 3 056–3 073

    Article  CAS  Google Scholar 

  19. Lin Y, Stansbury JW. Kinetics Studies of Hybrid Structure Formation by Controlled Photopolymerization[J]. Polymer, 2003, 44(17): 4 781–4 789

    Article  CAS  Google Scholar 

  20. Crivello JV, Sasaki H. Synthesis and Photopolymerization of Silicon-containing Multifunctional Oxetane Monomers[J]. J. Macromol. Sci., Part A: Pure Appl. Chem., 1993, 30(2–3): 173–187

    Article  Google Scholar 

  21. Crivello JV, Sasaki H. Structure and Reactivity Relationships in the Photoinitiated Cationic Polymerization of Oxetane Monomers[J]. J. Macromol. Sci., Part A: Pure Appl. Chem., 1993, 30(2–3): 189–206

    Article  Google Scholar 

  22. Zareanshahraki F, Jannesari A, Rastegar S. Morphology, Optical Properties, and Curing Behavior of UV-curable Acrylate-siloxane Polymer Blends[J]. Polym. Test., 2020, 85: 106 412

    Article  CAS  Google Scholar 

  23. Huang B, Wu B, Han L, et al. Preparation of a Novel Cationic Photosensitive Resin (3D-SLR01) for Stereolithography 3D Printing and Determination of Its Some Properties[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2019, 34(4): 761–768

    Article  CAS  Google Scholar 

  24. Esposito Corcione C, Frigione M, Maffezzoli A, et al. Photo-DSC and Real Time-FT-IR Kinetic Study of a UV Curable Epoxy Resin Containing O-Boehmites[J]. Eur. Polym. J., 2008, 44(7): 2 010–2 023

    Article  CAS  Google Scholar 

Download references

Funding

Funded by the National Natural Science Foundation of China (No.21865017)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biwu Huang  (黄笔武).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, S., Huang, B. & Chen, W. Synthesis of 1,1,3,3,5,5-hexamethyl-1,5-bis[(3-ethyl-3-methoxyoxetane)propyl]trisiloxane and Research on Its UV-curing Performance. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 942–948 (2021). https://doi.org/10.1007/s11595-021-2491-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2491-x

Key words

Navigation