Skip to main content
Log in

Formation Mechanism of Impure Phases and Crystallinity Investigation of YAG Powders Synthesized via the Co-precipitation Method

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

We investigated the impure phase problem and summarized its two formation mechanisms of YAG powders synthesized via the co-precipitation method. The ions loss problem caused by high concentration reaction solution in the titration process was emphatically studied, and the corresponding thermodynamic explanation was carried out. In addition, influence of powder crystallinity and its new qualitative and quantitative standards were studied. One reason of impure phase is the local nonuniform mixture of Y and Al elements in precursor, which easily causes intermediate phases during calcination and difficulty of high pure powders at low temperatures. The other reason is the precipitation dissolution during titration and then the Y3+/Al3+ loss, caused by high concentration of reaction solution. The powder crystallinity can be promoted by increasing calcination temperature or holding time of precursor. Besides the routine XRD method, the TEM-EDX method should be also introduced to directly determine the quality of crystallinity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ikesue A, Aung YL. Ceramics Laser Materials[J]. Nat. Photon., 2008, 2: 721–727

    Article  CAS  Google Scholar 

  2. Kochawattana S, Stevenson A, Lee SH, et al. Sintering and Grain Growth in SiO2 Doped Nd:YAG[J]. J. Am. Ceram. Soc., 2008, 28: 1 527–1 534

    Article  CAS  Google Scholar 

  3. Zhao Y, Liu Q, Ge L, et al. Tape Casting Fabrication and Properties of Planar Waveguide YAG/Yb:YAG/YAG Transparent Ceramics[J]. Opt. Mater., 2017, 69: 169–174

    Article  CAS  Google Scholar 

  4. Chrétien L, Bonnet L, Boulesteix R, et al. Influence of Hot Isostatic Pressing on Sintering Trajectory and Optical Properties of Transparent Nd:YAG Ceramics[J]. J. Eur. Ceram. Soc., 2016, 36: 2 035–2 042

    Article  CAS  Google Scholar 

  5. Bagayev SN, Osipov VV, Vatnik SM, et al. Ho:YAG Transparent Ceramics Based on Nanopowders Produced by Laser Ablation Method: Fabrication, Optical Properties, and Laser Performance[J]. Opt. Mater., 2015, 50: 47–51

    Article  CAS  Google Scholar 

  6. Hostaša J, Esposito L, Piancastelli A. Influence of Yb and Si Content on the Sintering and Phase Changes of Yb:YAG Laser Ceramics[J]. J. Eur. Ceram. Soc., 2012, 32: 2 949–2 956

    Article  CAS  Google Scholar 

  7. Ma C, Zhu J, Nan X, et al. Demonstration and CW Laser Performances of Composite YAG/Nd:LuAG/YAG Transparent Laser Ceramic[J]. J. Alloys. Compd., 2017, 727: 912–918

    Article  CAS  Google Scholar 

  8. Denker B, Galagan B, Osiko V, et al. Yb3+, Er3+: YAG at High Temperatures: Energy Transfer and Spectroscopic Properties[J]. Opt. Commun., 2007, 271: 142–147

    Article  CAS  Google Scholar 

  9. Xu J, Shi Y, Xie J, et al. Fabrication, Microstructure, and Luminescent Properties of Ce3+-Doped Lu3Al5O12 (Ce:LuAG) Transparent Ceramics by Low-Temperature Vacuum Sintering[J]. J. Am. Ceram. Soc., 2013, 96: 1 930–1 936

    Article  CAS  Google Scholar 

  10. Zhou T, Zhang L, Zhang J, et al. Improved Conversion Efficiency of Cr4+ Ions in Cr:YAG Transparent Ceramics by Optimization the Particle Sizes of Sintering Aids[J]. Opt. Mater., 2015, 50: 11–14

    Article  CAS  Google Scholar 

  11. Stevenson AJ, Li X, Martinez MA, et al. Effect of SiO2 on Densification and Microstructure Development in Nd:YAG Transparent Ceramics[J]. J. Am. Ceram. Soc., 2011, 94: 1 380–1 387

    Article  CAS  Google Scholar 

  12. Suárez M, Fernández A, Menéndez JL, et al. Hot Isostatic Pressing of Optically Active Nd:YAG Powders Doped by a Colloidal Processing Route[J]. J. Eur. Ceram. Soc., 2010, 30: 1 489–1 494

    Article  CAS  Google Scholar 

  13. Frage N, Kalabukhov S, Sverdlov N, et al. Effect of the Spark Plasma Sintering (SPS) Parameters and LiF Doping on the Mechanical Properties and the Transparency of Polycrystalline Nd-YAG[J]. Ceram. Int., 2012, 38: 5 513–5 519

    Article  CAS  Google Scholar 

  14. Yavetskiy RP, Vovk EA, Doroshenko AG, et al. Y3Al5O12 Translucent Nanostructured Ceramics-obtaining and Optical Properties[J]. Ceram. Int., 2011, 37: 2 477–2 484

    Article  CAS  Google Scholar 

  15. Spina G, Bonnefont G, Palmero P, et al. Transparent YAG Obtained by Spark Plasma Sintering of Co-precipitated Powder. Influence of Dispersion Route and Sintering Parameters on Optical and Microstructural Characteristics[J]. J. Eur. Ceram. Soc., 2012, 32: 2 957–2 964

    Article  CAS  Google Scholar 

  16. Huang H, Gong H, Tang D, et al. Synthesis and Characterization of Yttrium Aluminum Garnet by High-energy Ball Milling[J]. Opt. Mater., 2009, 31: 716–719

    Article  CAS  Google Scholar 

  17. Appiagyei KA, Messing GL, Dumm JQ. Aqueous Slip Casting of Transparent Yttrium Aluminum Garnet (YAG) Ceramics[J]. Ceram. Int., 2008, 34: 1 309–1 313

    Article  CAS  Google Scholar 

  18. Yang H, Qin XP, Zhang J, et al. Fabrication of Nd:YAG Transparent Ceramics with both TEOS and MgO Additives[J]. J. Alloys. Compd., 2011, 509: 5 274–5 279

    Article  CAS  Google Scholar 

  19. Ikesue A, Yoshida K, Yamamoto T, et al. Optical Scattering Centers in Polycrystalline Nd:YAG Laser[J]. J. Am. Ceram. Soc., 1997, 80: 1 517–1 522

    Article  CAS  Google Scholar 

  20. Liu W, Jiang B, Zhang W, et al. Influence of Heating Rate on Optical Properties of Nd:YAG Laser Ceramics[J]. Ceram. Int., 2010, 36: 2 197–2 201

    Article  CAS  Google Scholar 

  21. Katz A, Barraud E, Lemonnier S, et al. Role of LiF Additive on Spark Plasma Sintered Transparent YAG Ceramics[J]. Ceram. Int., 2017, 43: 15 626–15 634

    Article  CAS  Google Scholar 

  22. Yao Q, Zhang L, Jiang Z, et al. Isobam Assisted Slurry Optimization and Gelcasting of Transparent YAG Ceramics[J]. Ceram. Int., 2018, 44: 1 699–1 704

    Article  CAS  Google Scholar 

  23. Kraxner J, Chovanec J, Haladejová K, et al. Hollow Polycrystalline YAG Microspheres by Flame Synthesis[J]. Mater. Lett., 2017, 204: 181–183

    Article  CAS  Google Scholar 

  24. Lu J, Prabhu M, Song J, et al. Optical Properties and Highly Efficient Laser Oscillation of Nd:YAG Ceramics[J]. Appl. Phys. B, 2000, 71: 469–473

    Article  CAS  Google Scholar 

  25. Yagi H, Yanagitani T, Takaichi K, et al. Characterizations and Laser Performances of Highly Transparent Nd3+:Y3Al5O12 Laser Ceramics[J]. Opt. Mater., 2007, 29: 1 258–1 262

    Article  CAS  Google Scholar 

  26. Li J, Wu YS, Pan YB, et al. Fabrication, Microstructure and Properties of Highly Transparent Nd:YAG Laser Ceramics[J]. Opt. Mater., 2008, 31: 6–17

    Article  CAS  Google Scholar 

  27. Guo W, Cao Y, Huang Q, et al. Fabrication and Laser Behaviors of Nd:YAG Ceramic Microchips[J]. J. Eur. Ceram. Soc., 2011, 31: 2 241–2 246

    Article  CAS  Google Scholar 

  28. Wei N, Lu T, Li F, et al. Transparent Ce:Y3Al5O12 Ceramic Phosphors for White Light-emitting Diodes[J]. Appl. Phys. Lett., 2012, 101: 061902

    Article  CAS  Google Scholar 

  29. Singh R, Khardekar RK, Kumar A, et al. Preparation and Characterization of Nanocrystalline Nd-YAG Powder[J]. Mater. Lett., 2007, 61: 921–924

    Article  CAS  Google Scholar 

  30. Rabinovitch Y, Bogicevic C, Karolak F, et al. Freeze-dried Nanometric Neodymium-doped YAG Powders for Transparent Ceramics[J]. J. Mater. Process. Technol., 2008, 199: 314–320

    Article  CAS  Google Scholar 

  31. Li X, Li Q, Wang J, et al. Synthesis of Nd3+ Doped Nano-crystalline Yttrium Aluminum Garnet (YAG) Powders Leading to Transparent Ceramic[J]. Opt. Mater., 2007, 29: 528–531

    Article  CAS  Google Scholar 

  32. Wen L, Sun X, Xiu ZM, et al. Synthesis of Nanocrystalline Yttria Powder and Fabrication of Transparent YAG Ceramics[J]. J. Eur. Ceram. Soc., 2004, 24: 2 681–2 688

    Article  CAS  Google Scholar 

  33. Lu Q, Dong W, Wang H, et al. A Novel Way to Synthesize Yttrium Aluminum Garnet from Metal-inorganic Precursors[J]. J. Am. Ceram. Soc., 2002, 85: 490–492

    Article  CAS  Google Scholar 

  34. Wildfire C, Sabolsky EM, Spencer MJ, et al. Solid-state Synthesis of YAG Powders Through Microwave Coupling of Oxide/Carbon Particulate Mixtures[J]. Ceram. Int., 2017, 43: 11 455–11 462

    Article  CAS  Google Scholar 

  35. Su X, Zhou J, Bai G, et al. Low Temperature Synthesis and Characterization of YAG Nanopowders by Polyacrylamide Gel Method[J]. Ceram. Int., 2016, 42: 17 497–17 502

    Article  CAS  Google Scholar 

  36. Su J, Zhang QL, Gu CJ, et al. Preparation and Characterization of Y3Al5O12 (YAG) Nano-powder by Co-precipitation Method[J]. Mater. Res. Bull., 2005, 40: 1 279–1 285

    Article  CAS  Google Scholar 

  37. Li JG, Ikegami T, Lee JH, et al. Co-precipitation Synthesis and Sintering of Yttrium Aluminum Garnet (YAG) Powders: the Effect of Precipitant[J]. J. Eur. Ceram. Soc., 2000, 20: 2 395–2 405

    Article  CAS  Google Scholar 

  38. Lu Z, Lu T, Wei N, et al. Novel Phenomenon on Valence Unvariation of Doping Ion in Yb:YAG Transparent Ceramics using MgO Additives[J]. J. Wuhan. Univ. Technol-Mater. Sci. Ed., 2013, 28: 320–324

    Article  CAS  Google Scholar 

  39. Li J, Chen F, Liu W, et al. Co-precipitation Synthesis Route to Yttrium Aluminum Garnet (YAG) Transparent Ceramics[J]. J. Eur. Ceram. Soc., 2012, 32: 2 971–2 979

    Article  CAS  Google Scholar 

  40. Wang H, Gao L, Niihara K. Synthesis of Nanoscaled Yttrium Aluminum Garnet Powder by the Co-precipitation Method[J]. Mater. Sci. Eng. A, 2000, 288: 1–4

    Article  Google Scholar 

  41. Li J, Sun X, Liu S, et al. A Homogenuous Co-precipitation Method to Synthesize Highly Sinterability YAG Powders for Transparent Ceramics[J]. Ceram. Int., 2015, 41: 3 283–3 287

    Article  CAS  Google Scholar 

  42. Qiu Q, Huang M, Zheng W, et al. Impact of Molar Ratio of Total Metal Ions to Precipitant on YAG:Ce Nanophosphors Synthesized by Reverse Titration Coprecipitation[J]. Ceram. Int., 2017, 43: 8 730–8 734

    Article  CAS  Google Scholar 

  43. Marlot C, Barraud E, Gallet SL, et al. Synthesis of YAG Nanopowder by the Co-precipitation Method: Influence of pH and Study of the Reaction Mechanisms[J]. J. Solid. State. Chem., 2012, 191: 114–120

    Article  CAS  Google Scholar 

  44. Rahmani M, Mirzaee O, Tajally M, et al. The Effects of pH and Excess Al3+ Content on the Microstructure and Phase Evolution of YAG Polycrystals[J]. Ceram. Int., 2017, 43: 12 563–12 571

    Article  CAS  Google Scholar 

  45. Ma B, Lu T, Xiao S, et al. Preparation of YAG Powder by Co-precipitation Method in a Narrow pH-change Environment[J]. J. Wuhan. Univ. Technol-Mater. Sci. Ed., 2010, 25: 379–383

    Article  CAS  Google Scholar 

  46. Guo W, Lu T, Tong S. Effect of Phase of YAG Powder Synthesized by Co-precipitation on Transparent Ceramic Sintering[J]. Key Eng. Mater., 2007, 336–338: 2 054–2 057

    Article  Google Scholar 

  47. Cao XZ, Song TY, Wang XQ. Inorganic Chemistry[M]. 3rd ed. Bei Jing: Higher Education Press, 1994

    Google Scholar 

  48. Ma B, Wang B, Zhang W, et al. Promotion of Powder Crystallinity and Its Influence on the Properties of Nd:YAG Transparent Ceramics[J]. Opt. Mater., 2017, 64: 383–390

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiecheng Lu  (卢铁城).

Additional information

Funded by the Science Fund of Educational Department of Henan Province of China (No. 19A430002)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, B., Pu, C., He, J. et al. Formation Mechanism of Impure Phases and Crystallinity Investigation of YAG Powders Synthesized via the Co-precipitation Method. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 36, 517–525 (2021). https://doi.org/10.1007/s11595-021-2439-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-021-2439-1

Key words

Navigation