Skip to main content
Log in

Synthesis of the Core-Shell Structure Materials as the Controlled-Release Drug Carrier

  • Biomaterials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

We have developed a controlled-release drug carrier. Smartly controlled-release polymer nanoparticles were firstly synthesized through RAFT polymerization as the controlled-release core. The structural and particle properties of polymer nanoparticles were characterized by nuclear magnetic resonance spectroscopy (1H-NMR), scanning electron microscope (SEM) and X-ray spectroscopy (EDX). Mesoporous materials were selected as the shell materials to encapsulate the smart core as the stable shell. The mesoporous shell was characterized by transmission electron microscopy (TEM) and scanning electron microscope (SEM). All the results showed that a well-defined core-shell structure with mesoporous structure was obtained, and this controllable delivery system will have the great potential in nanomedicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jeong B, Bae Y H, Lee D S, et al. Biodegradable Block Copolymers as Injectable Drug-Delivery Systems[J]. Nature, 1997, 388(6445): 860–862

    Article  CAS  Google Scholar 

  2. Das M, Mardyani S, Chan W C W, et al. Biofunctionalized pH-Responsive Microgels for Cancer Cell Targeting: Rational Design[J]. Adv. Mater., 2006, 18(1): 80–83

    Article  CAS  Google Scholar 

  3. Xiong M, Bao Y, Yang X, et al. Lipase-Sensitive Polymeric Triple-Layered Nanogel for “On-Demand” Drug Delivery[J]. J. Am. Chem. Soc., 2012, 134(9): 4 355–4 362

    Article  CAS  Google Scholar 

  4. Uhrich K E, Cannizzaro S M, Langer R S, et al. Polymeric Systems for Controlled Drug Release[J]. Chem. Rev., 1999, 99(11): 3 181–3 198

    Article  CAS  Google Scholar 

  5. Ekladious I, Colson Y L, Grinstaff M W. Polymer-Drug Conjugate Therapeutics: Advances, Insights and Prospects[J]. Nat. Rev. Drug. Discov., 2019, 18(4): 273–294

    Article  CAS  Google Scholar 

  6. Bai Y, Teng B, Chen S, et al. Preparation of Magnetite Nanoparticles Coated with an Amphiphilic Block Copolymer: A Potential Drug Carrier with a Core-Shell-Corona Structure for Hydrophobic Drug Delivery[J]. Macromol. Rapid. Comm., 2006, 27(24): 2 107–2 112

    Article  CAS  Google Scholar 

  7. Uekama K, Hirayama F, Irie T. Cyclodextrin Drug Carrier Systems[J]. Chem. Rev., 1998, 98(5): 2 045–2 076

    Article  CAS  Google Scholar 

  8. Zhang X, Hao L, Wang H, et al. Preparation and Characterization of Superparamagnetic Fe3O4/CNTs Nanocomposites Dual-Drug Carrier[J]. J. Wuhan. Univ. Technol., 2017, 32(1): 42–46

    Article  CAS  Google Scholar 

  9. Wang W, Wang Y, Wang Y, et al. Preparation and Characterization of Carboxyl Functionalized Fluorescent Mesoporous Silica Nanoparticles Containing 8-Hydroxyquinolinate Zinc Complexes[J]. J. Wuhan. Univ. Technol., 2019, 34(4): 973–978

    Article  CAS  Google Scholar 

  10. Langer R, Folkman J. Polymers for the Sustained Release of Proteins and Other Macromolecules[J]. Nature, 1976, 263(5580): 797–800

    Article  CAS  Google Scholar 

  11. Kamaly N, Yameen B, Wu J, et al. Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release[J]. Chem. Rev., 2016, 116(4): 2 602–2 663

    Article  CAS  Google Scholar 

  12. Xu H, Cao W, Zhang X. Selenium-Containing Polymers: Promising Biomaterials for Controlled Release and Enzyme Mimics[J]. Acc. Chem. Res., 2013, 46(7): 1 647–1 658

    Article  CAS  Google Scholar 

  13. Nayak S, Lee H, Chmielewski J, et al. Folate-Mediated Cell Targeting and Cytotoxicity Using Thermoresponsive Microgels[J]. J. Am. Chem. Soc., 2004, 126(33): 10 258–10 2591

    Article  CAS  Google Scholar 

  14. Cai K, He X, Song Z, et al. Dimeric Drug Polymeric Nanoparticles with Exceptionally High Drug Loading and Quantitative Loading Efficiency[J]. J. Am. Chem. Soc., 2015, 137(10): 3 458–3 461

    Article  CAS  Google Scholar 

  15. Petros R A, Desimone J M. Strategies in the Design of Nanoparticles for Therapeutic Applications[J]. Nat. Rev. Drug. Discov., 2010, 9(8): 615–627

    Article  CAS  Google Scholar 

  16. Ulbrich K, Holá K, Šubr V, et al. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies[J]. Chem. Rev., 2016, 116(9): 5 338–5 431

    Article  CAS  Google Scholar 

  17. Wang Y, Gao S, Ye W, et al. Co-Delivery of Drugs and DNA from Cationic Core-Shell Nanoparticles Self-Assembled from a Biodegradable Copolymer[J]. Nat. Mater., 2006, 5(10): 791–796

    Article  CAS  Google Scholar 

  18. Elsabahy M, Heo G S, Lim S-M, et al. Polymeric Nanostructures for Imaging and Therapy[J]. Chem. Rev., 2015, 115(19): 10 967–11 011

    Article  CAS  Google Scholar 

  19. Zhang Q, Lee I, Joo J B, et al. Core-Shell Nanostructured Catalysts[J]. Acc. Chem. Res., 2013, 46(8): 1 816–1 824

    Article  CAS  Google Scholar 

  20. Seo W S, Lee J H, Sun X, et al. FeCo/Graphitic-Shell Nanocrystals as Advanced Magnetic-Resonance-Imaging and Near-Infrared Agents[J]. Nat. Mater., 2006, 5(12): 971–976

    Article  CAS  Google Scholar 

  21. Zhang F, Braun G B, Shi Y, et al. Fabrication of Ag@SiO2@Y2O3:Er Nanostructures for Bioimaging: Tuning of the Upconversion Fluorescence with Silver Nanoparticles[J]. J. Am. Chem. Soc., 2010, 132(9): 2 850–2 851

    Article  CAS  Google Scholar 

  22. Laurent S, Forge D, Port M, et al. Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications[J]. Chem. Rev., 2008, 108(6): 2 064–2 110

    Article  CAS  Google Scholar 

  23. Shah B, Yin P T, Ghoshal S, et al. Multimodal Magnetic Core-Shell Nanoparticles for Effective Stem-Cell Differentiation and Imaging[J]. Angew. Chem., 2013, 52(24): 6 190–6 195

    Article  CAS  Google Scholar 

  24. Lu Y, Cheng X, Tian G, et al. Hierarchical CdS/m-TiO2/G Ternary Photocatalyst for Highly Active Visible Light-Induced Hydrogen Production from Water Splitting with High Stability[J]. Nano Energy, 2018, 47: 8–17

    Article  CAS  Google Scholar 

  25. Yang X, Li Y, Van Tendeloo G, et al. One-Pot Synthesis of Catalytically Stable and Active Nanoreactors: Encapsulation of Size-Controlled Nanoparticles within a Hierarchically Macroporous Core@Ordered Mesoporous Shell System[J]. Adv. Mater., 2009, 21(13): 1 368–1 372

    Article  CAS  Google Scholar 

  26. Gawande M B, Goswami A, Asefa T, et al. Core-Shell Nanoparticles: Synthesis and Applications in Catalysis and Electrocatalysis[J]. Chem. Soc. Rev., 2015, 44(21): 7 540–7 590

    Article  CAS  Google Scholar 

  27. Oldenburg S J, Averitt R D, Westcott S L, et al. Nanoengineering of Optical Resonances[J]. Chem. Phys. Lett., 1998, 288(2–4): 243–247

    Article  CAS  Google Scholar 

  28. Daniel M C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology[J]. Chem. Rev., 2004, 104(1): 293–346

    Article  CAS  Google Scholar 

  29. Yang X, Chen L, Li Y, et al. Hierarchically Porous Materials: Synthesis Strategies and Structure Design[J]. Chem. Soc. Rev., 2017, 46(2): 481–558

    Article  CAS  Google Scholar 

  30. Singh N, Karambelkar A, Gu L, et al. Bioresponsive Mesoporous Silica Nanoparticles for Triggered Drug Release[J]. J. Am. Chem. Soc., 2011, 133(49): 19 582–19 585

    Article  CAS  Google Scholar 

  31. Paris J L, Cabañas M V, Manzano M, et al. Polymer-Grafted Mesoporous Silica Nanoparticles as Ultrasound-Responsive Drug Carriers[J]. ACS Nano, 2015, 9(11): 11 023–11 033

    Article  CAS  Google Scholar 

  32. Slowing I I, Vivero-Escoto J L, Wu C-W, et al. Mesoporous Silica Nanoparticles as Controlled Release Drug Delivery and Gene Transfection Carriers[J]. Adv. Drug. Del. Rev., 2008, 60(11): 1 278–1 288

    Article  CAS  Google Scholar 

  33. Ryu J-H, Jiwpanich S, Chacko R, et al. Surface-Functionalizable Polymer Nanogels with Facile Hydrophobic Guest Encapsulation Capabilities[J]. J. Am. Chem. Soc., 2010, 132(24): 8 246–8 247

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junli Li  (李俊丽) or Xiaoyu Yang  (阳晓宇).

Additional information

Funded by National Natural Science Foundation of China (Nos. 51861135313, U1663225, U1662134, 21711530705, 21673282, 21473246), Fundamental Research Funds for the Central Universities (Nos.19lgpy112, 19lgzd16, 2019IB005), National Key R&D Program of China (No.2017YFC1103800), Program for Changjiang Scholars and Innovative Research Team in University (No. IRT_15R52), International Science & Technology Cooperation Program of China (No.2015DFE52870), and Jilin Province Science and Technology Development Plan (No.20180101208JC)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Hu, Z., Hu, J. et al. Synthesis of the Core-Shell Structure Materials as the Controlled-Release Drug Carrier. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 658–664 (2020). https://doi.org/10.1007/s11595-020-2303-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-020-2303-8

Key words

Navigation