Skip to main content

Advertisement

Log in

Preparation and Properties of CdS/Spherical g-C3N4 n-n Heterojunction as a Visible-Light-Driven Photocatalyst for Tetracycline Degradation

  • Advanced material
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The CdS/ spherical g-C3N4 n-n heterojunction photocatalyst was fabricated via a solvothermal method. The tetracycline was used to characterize the photocatalytic properties of the as-developed hybrids. The photocatalytic degradation mechanism of the as-developed heterojunction photocatalyst was also analyzed. Research results show that CdS nanoparticles are well dispersed in the surface layer of spherical g-C3N4. Moreover, the mass ratio of CdS to spherical g-C3N4 will influence the photocatalytic activity of the asdeveloped composites, which shows the trend of first increasing and then decreasing as it increased. When the mass ratio is 7:1, in 25 min, the as-developed heterojunction shows 93.2 % of the maximum photocatalytic efficiency and still exhibits 83.6 % after 5 times cycle testing. Moreover, the as-developed hybrids can accelerate the electron transport and improve the separation efficiency of photo-generated carriers compared with pure samples. In addition, the holes and superoxide radicals are dominating active species during the photocatalytic degradation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chen D, Liu Z F, Zhou M, et al. Enhanced Photoelectrochemical Water Splitting Performance of α-Fe2O3 Nanostructures Modified with Sb2S3 and Cobalt Phosphate[J]. J. Alloy. Compd., 2018, 742: 918–927

    Article  CAS  Google Scholar 

  2. Liu Z F, Zhang J, Yan W G. Enhanced Photoelectrochemical Water Splitting of Photoelectrode Simultaneous Decorated with Cocatalysts Based on Spatial Charge Separation and Transfer[J]. ACS Sustain. Chem. Eng., 2018, 6(3): 3 565–3 574

    Article  CAS  Google Scholar 

  3. Wang W, Fang J J, Shao S F, et al. Compact and Uniform TiO2@g-C3N4, Core-Shell Quantum Heterojunction for Photocatalytic Degradation of Tetracycline Antibiotics[J]. Appl. Catal. B-Environ., 2017, 217: 57–64

    Article  CAS  Google Scholar 

  4. Martins A C, Cazetta A L, Pezoti O, et al. Sol-Gel Synthesis of New TiO2/Activated Carbon Photocatalyst and Its Application for Degradation of Tetracycline[J]. Ceram. Int., 2017, 43(5): 4 411–4 418

    Article  CAS  Google Scholar 

  5. Santhosh C, Velmurugan V, Jacob G, et al. Role of Nanomaterials in Water Treatment Applications: A Review[J]. Chem. Eng. J., 2016, 306: 1 116–1 137

    Article  CAS  Google Scholar 

  6. Jiang H L, Li X Q, Tian L, et al. Defluoridation Investigation of Yttrium by Laminated Y-Zr-Al Tri-metal Nanocomposite and Analysis of the Fluoride Sorption Mechanism[J]. Sci. Total Environ., 2019, 648: 1 342–1 353

    Article  CAS  Google Scholar 

  7. Tian L, Jiang H L, Chen P H, et al. A Novel GO/PNIPAm Hybrid with Two Functional Domains Can Simultaneously Effectively Adsorb and Recover Valuable Organic and Inorganic Resources[J]. Chem. Eng. J., 2018, 343: 607–618

    Article  CAS  Google Scholar 

  8. Wu X F, Li H, Sun Y, et al. One-Step Hydrothermal Synthesis of In2.77S4 Nanosheets with Efficient Photocatalytic Activity under Visible Light[J]. Appl. Phys. A-Mater., 2017, 123(11): 709. https://doi.org/10.1007/s00339-017-1016-0

    Article  Google Scholar 

  9. Zhou M, Liu Z H, Song Q G, et al. Hybrid 0D/2D Edamame Shaped ZnIn2S4 Photoanode Modified by Co-Pi and Pt for Charge Management Towards Efficient Photoelectrochem Water Splitting[J]. Appl. Catal. B-Environ., 2019, 244: 188–196

    Article  CAS  Google Scholar 

  10. Wu X F, Li H, Sun Y, et al. Synthesis of SnS2/Few Layer Boron Nitride Nanosheets Composites As a Novel Material for Visible-Light-Driven Photocatalysis[J]. Appl. Phys. A-Mater., 2017, 19(6): 193. https://doi.org/10.1007/s00339-017-1286-6

    Google Scholar 

  11. Jiang H L, Li M L, Liu J, et al. Alkali-Free Synthesis of a Novel Heterostructured CeO2-TiO2 Nanocomposite with High Performance to Reduce Cr(VI) under Visible Light[J]. Ceram. Int., 2018, 44: 2 709–2 717

    Article  CAS  Google Scholar 

  12. Sharma S, Umar A, Mehta S K, et al. Solar Light Driven Photocatalytic Degradation of Levofloxacin Using TiO2/Carbon-Dots Nanocomposite[J]. New J. Chem., 2018, 42: 7 445–7 456

    Article  CAS  Google Scholar 

  13. Lan Y Y, Liu Z F, Guo Z G, et al. ZnO/ZnFe2O4 Uniform Core-Shell Heterojunction With Tubular Structure Modified by NiOOH for Efficient Photoelectrochemical Water Splitting[J]. Dalton T., 2018, 47: 12 181–12 187

    Article  CAS  Google Scholar 

  14. Ma C H, Liu Z F, Cai Q J, et al. ZnO Photoelectrode Simultaneous Modified with Cu2O and Co-Pi Based on Broaden Light Absorption and Efficient Photogenerated Carriers Separation[J]. Inorg. Chem. Front., 2018, 5: 2 571–2 578

    Article  CAS  Google Scholar 

  15. Zhao J H, Nan J, Zhao Z W, et al. Energy-Efficient Fabrication of a Novel Multivalence Mn3O4-MnO2 Heterojunction for Dye Degradation under Visible Light Irradiation[J]. Appl. Catal. B-Environ., 2017, 202: 509–517

    Article  CAS  Google Scholar 

  16. Wang Y J, Zu X H, Yi G B, et al. Gap-Plasmon of Fe3O4@Ag Core-Shell Nanostructures for Highly Enhanced Fluorescence Detection of Rhodamine B[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2017, 32(2): 264–271

    Article  CAS  Google Scholar 

  17. Yang M, Jin X Q. Visible Light-Induced Cr-Doped SrTiO3-g-C3N4 Composite for Improved Photocatalytic Performance[J]. J. Wuhan Univ. Technol.-Mater. Sci. Ed., 2014, 29(6): 1 111–1 116

    Article  CAS  Google Scholar 

  18. Xu H Y, Wu L C, Jin L G, et al. Combination Mechanism and Enhanced Visible-Light Photocatalytic Activity and Stability of CdS/g-C3N4 Heterojunctions[J]. J. Mater. Sci. Technol., 2017, 33: 32–40

    Google Scholar 

  19. Wang Z Y, Guan W, Sun Y J, et al. Water-Assisted Production of Honeycomb-Like g-C3N4 with Ultralong Carrier Lifetime and Outstanding Photocatalytic Activity[J]. Nanoscale, 2015, 7: 2 471–2 479

    Article  CAS  Google Scholar 

  20. Fan M S, Song C J, Chen T J, et al. Visible-Light-Drived High Photocatalytic Activities of Cu/g-C3N4 Photocatalysts for Hydrogen Production[J]. RSC Adv., 2016, 6: 34 633–34 640

    Article  CAS  Google Scholar 

  21. Chen D, Liu Z F. Dual-Axial Gradient Doping (Zr and Sn) on Hematite for Promoting Charge Separation in Photoelectrochemical Water Splitting[J]. Chemsuschem, 2018, 11: 3 438–3 448

    Article  CAS  Google Scholar 

  22. Panneri S, Ganguly P, Mohan M, et al. Photoregenerable, Bifunctional Granules of Carbon-Doped g-C3N4 as Adsorptive Photocatalyst for the Efficient Removal of Tetracycline Antibiotic[J]. ACS Sustain. Chem. Eng., 2017, 5(2): 1 610–1 618

    Article  CAS  Google Scholar 

  23. Zheng N G, Ouyang T, Chen Y B, et al. Ultrathin CdS Shell-Sensitized Hollow S-Doped CeO2 Spheres for Efficient Visible-Light Photocatalysis[J]. Catal. Sci. Technol., 2019, 9: 1 357–1 364

    Article  CAS  Google Scholar 

  24. Mao Z Y, Chen J J, Yang Y F, et al. Novel g-C3N4/CoO Nanocomposites with Significantly Enhanced Visible-Light Photocatalytic Activity for H2 Evolution[J]. ACS Appl. Mater. Inter., 2017, 9(14): 12 427–12 435

    Article  CAS  Google Scholar 

  25. Ouyang T, Ye Y Q, Wu C Y, et al. Heterostructures Comprised of Co/β-Mo2C-Encapsulated N-Doped Carbon Nanotubes as Bifunctional Electrodes for Water Splitting[J]. Angew. Chem. Int. Ed., 2019, 58: 4 923–4 928

    Article  CAS  Google Scholar 

  26. Akple M S, Low J X, Wageh S, et al. Enhanced Visible Light Photocatalytic H2-Production of g-C3N4/WS2 Composite Heterostructures[J]. Appl. Surf. Sci., 2015, 358: 196–203

    Article  CAS  Google Scholar 

  27. Zhao L H, Zhang L H, Lin H J, et al. Fabrication and Characterization of Hollow CdMoO4 Coupled g-C3N4 Heterojunction with Enhanced Photocatalytic Activity[J]. J. Hazard. Mater., 2015, 299: 333–342

    Article  CAS  Google Scholar 

  28. Li D, Shi F F, Jiang D L, et al. CdIn2S4/g-C3N4 Heterojunction Photocatalysts: Enhanced Photocatalytic Performance and Charge Transfer Mechanism[J]. RSC Adv., 2017, 7: 231–237

    Article  CAS  Google Scholar 

  29. Fang Z L, Rong H F, Ya Z L, et al. In-Situ Synthesis of CdS/g-C3N4 Hybrid Nanocomposites with Enhanced Visible Photocatalytic Activity[J]. J. Mater. Sci., 2015, 50(8): 3 057–3 064

    Article  CAS  Google Scholar 

  30. Wei R B, Huang Z L, Gu G H, et al. Dual-Cocatalysts Decorated Rimous CdS Spheres Advancing Highly-Efficient Visible-Light Photocatalytic Hydrogen Production[J]. Appl. Catal. B-Environ., 2018, 231: 101–107

    Article  CAS  Google Scholar 

  31. Wang K, Li Y, Zhang G K, et al. 0D Bi Nanodots/2D Bi3NbO7 Nanosheets Heterojunctions for Efficient Visible Light Photocatalytic Degradation of Antibiotics: Enhanced Molecular Oxygen Activation and Mechanism Insight[J]. Appl. Catal. B-Environ., 2018, 240: 39–49

    Article  Google Scholar 

  32. Xiao P, Jiang D L, Ju L X, et al. Construction of RGO/CdIn2S4/g-C3N4 Ternary Hybrid with Enhanced Photocatalytic Activity for the Degradation of Tetracycline Hydrochloride[J]. Appl. Surf. Sci., 2018, 433: 388–397

    Article  CAS  Google Scholar 

  33. Wu X F, Zhao Z H, Sun Y, et al. Preparation and Characterization of Ag2CrO4/Few Layer Boron Nitride Hybrids for Visible-Light-Driven Photocatalysis[J]. J. Nanopart. Res., 2017, 19(6): 193. https://doi.org/10.1007/s11051-017-3892-9

    Article  Google Scholar 

  34. Zhang Z Y, Jiang D L, He M Q, et al. Construction of SnNb2O6 Nanosheet/g-C3N4 Nanosheet Two-Dimensional Heterostructures with Improved Photocatalytic Activity: Synergistic Effect and Mechanism Insight[J]. Appl. Catal. B-Environ., 2016, 183: 113–123

    Article  CAS  Google Scholar 

  35. Wu X F, Li H, Su J Z, et al. Full Spectrum Responsive In2.77S4/WS2 P-N Heterojunction as an Efficient Photocatalyst for Cr(VI) Reduction and Tetracycline Oxidation[J]. Appl. Surf. Sci., 2019, 473: 992–1 001

    Article  CAS  Google Scholar 

  36. Xiao T T, Tang Z, Yang Y, et al. In Situ Construction of Hierarchical WO3/g-C3N4 Composite Hollow Microspheres as a Z-Scheme Photocatalyst for the Degradation of Antibiotics[J]. Appl. Catal. B-Environ., 2017, 220: 417–428

    Article  Google Scholar 

  37. Wu X F, Sun Y, Li H, et al. In-Situ Synthesis of Novel P-N Heterojunction of Ag2CrO4-Bi2Sn2O7 Hybrids for Visible-Light-Driven Photocatalysis[J]. J. Alloy. Compd., 2018, 740: 1 197–1 203

    Article  CAS  Google Scholar 

  38. Zhang J Y, Wang Y H, Jin J, et al. Efficient Visible-Light Photocatalytic Hydrogen Evolution and Enhanced Photostability of Core/Shell CdS/g-C3N4 Nanowires[J]. ACS Appl. Mater. Inter., 2013, 5(20): 10 317–10 324

    Article  CAS  Google Scholar 

  39. Huang L Y, Xu H, Zhang R X, et al. Synthesis and Characterization of g-C3N4/MoO3 Photocatalyst with Improved Visible-Light Photoactivity[J]. Appl. Surf. Sci., 2013, 283: 25–32

    Article  CAS  Google Scholar 

  40. Wang J, Zhang G K, Li J, et al. Novel 3D Flower-Like BiOBr/Bi2SiO5 P-N Heterostructured Nanocomposite for Degradation of Tetracycline: Enhanced Visible Light Photocatalytic Activity and Mechanism[J]. ACS Sustain. Chem. Eng., 2018, 6: 14 221–14 229

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiangfeng Wu  (吴湘锋) or Hui Wang  (王惠).

Additional information

Conflict of interest

The authors declare no conflicts of interest.

Funded by the Natural Science Foundation of Hebei Province, China (Nos. E2019210251 and B2019210331)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, J., Wu, X., Zhang, C. et al. Preparation and Properties of CdS/Spherical g-C3N4 n-n Heterojunction as a Visible-Light-Driven Photocatalyst for Tetracycline Degradation. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 35, 99–106 (2020). https://doi.org/10.1007/s11595-020-2232-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-020-2232-6

Keywords

Navigation